- •Технологии бд
- •1. Теоретические основы организации бд. Реляционная модель данных. 5
- •2. Технологии проектирования реляционных бд 27
- •3. Технологии манипулирования данными в бд. Основы sql. 93
- •4. Технологии построения информационных систем – приложений бд 136
- •5. Хранилища данных (DataWarehousing) и системы оперативной аналитической обработки данных 161
- •6. Литература 171
- •1.Теоретические основы организации бд. Реляционная модель данных.
- •1.1.Подходы к организации баз данных
- •1.1.1.Иерархические базы данных
- •1.1.2.Сетевые базы данных
- •1.1.3.Реляционные базы данных
- •12 Правил Кодда:
- •1.2.Введение в реляционную модель данных
- •1.2.1.Основные понятия реляционной модели данных
- •1.2.1.1.Тип данных
- •1.2.1.2.Домен
- •1.2.1.3.Заголовок отношения, кортеж, тело отношения, значение отношения, переменная отношения
- •1.2.1.4.Первичный ключ и интуитивная интерпретация реляционных понятий
- •1.2.2.Фундаментальные свойства отношений
- •1.2.2.1.Отсутствие кортежей-дубликатов, первичный и возможные ключи отношений
- •1.2.2.2.Отсутствие упорядоченности кортежей
- •1.2.2.3.Отсутствие упорядоченности атрибутов
- •1.2.2.4.Атомарность значений атрибутов, первая нормальная форма отношения
- •1.2.3.Реляционная модель данных
- •1.2.3.1.Общая характеристика
- •1.2.3.2.Целостность реляционных данных
- •Null-значения
- •Трехзначная логика (3vl)
- •Потенциальные ключи
- •Целостность сущностей
- •Внешние ключи
- •Целостность внешних ключей
- •Замечания к правилам целостности сущностей и внешних ключей
- •Операции, могущие нарушить ссылочную целостность
- •Стратегии поддержания ссылочной целостности
- •2.Технологии проектирования реляционных бд
- •2.1.Этапы разработки базы данных
- •2.2.Критерии оценки качества логической модели данных
- •Адекватность базы данных предметной области
- •Легкость разработки и сопровождения базы данных
- •Скорость операций обновления данных (вставка, обновление, удаление)
- •Скорость операций выборки данных
- •2.3.Проектирование реляционных баз данных на основе принципов нормализации
- •2.3.1.Понятие метода нормализации отношений
- •2.3.2.Декомпозиция без потерь и функциональные зависимости
- •Корректные и некорректные декомпозиции отношений. Теорема Хеза
- •Теорема Хеза.
- •2.3.3.Диаграммы функциональных зависимостей
- •2.3.4.Первая нормальная форма
- •2.3.5.Минимальные функциональные зависимости и вторая нормальная форма
- •2.3.5.1.Аномалии обновления, возникающие из-за наличия неминимальных функциональных зависимостей
- •2.3.5.2.Возможная декомпозиция
- •2.3.5.3.Вторая нормальная форма
- •2.3.6.Нетранзитивные функциональные зависимости и третья нормальная форма
- •2.3.6.1.Аномалии обновлений, возникающие из-за наличия транзитивных функциональных зависимостей
- •2.3.6.2.Возможная декомпозиция
- •2.3.6.3.Третья нормальная форма
- •2.3.6.4.Независимые проекции отношений. Теорема Риссанена
- •2.3.7.Перекрывающиеся возможные ключи и нормальная форма Бойса-Кодда
- •2.3.7.1.Аномалии обновлений, связанные с наличием перекрывающихся возможных ключей
- •2.3.7.2.Нормальная форма Бойса-Кодда
- •2.3.7.3.Всегда ли следует стремиться к bcnf?
- •2.3.8.Необходимость дальнейшей нормализации
- •2.3.9.Многозначные зависимости и четвертая нормальная форма
- •2.3.9.1.Аномалии обновлений при наличии многозначных зависимостей и возможная декомпозиция
- •2.3.9.2.Многозначные зависимости. Теорема Фейджина. Четвертая нормальная форма
- •Лемма Фейджина
- •Теорема Фейджина
- •2.3.10.Зависимости проекции/соединения и пятая нормальная форма
- •2.3.10.2.Зависимость проекции/соединения
- •2.3.10.3.Аномалии, вызываемые наличием зависимости проекции/соединения
- •2.3.10.4.Устранение аномалий обновления в 3-декомпозиции
- •2.3.10.5.Пятая нормальная форма
- •2.3.11.Заключение
- •2.4.Проектирование реляционных баз данных с использованием семантических моделей: er-диаграммы
- •2.4.1.Ограниченность реляционной модели при проектировании баз данных
- •2.4.1.1.Семантические модели данных
- •2.4.2.Семантическая модель Entity-Relationship (Сущность-Связь)
- •2.4.2.1.Основные понятия er-модели
- •2.4.2.2.Уникальные идентификаторы типов сущности
- •2.4.3.Нормальные формы er-диаграмм
- •2.4.3.1.Первая нормальная форма er-диаграммы
- •2.4.3.2.Вторая нормальная форма er-диаграммы
- •2.4.3.3.Третья нормальная форма er-диаграммы
- •2.4.4.Более сложные элементы er-модели
- •2.4.4.1.Наследование типов сущности и типов связи
- •2.4.4.2.Взаимно исключающие связи
- •2.4.5.Получение реляционной схемы из er-диаграммы
- •2.4.5.1.Базовые приемы
- •2.4.5.2.Представление в реляционной схеме супертипов и подтипов сущности
- •2.4.5.3.Представление в реляционной схеме взаимно исключающих связей
- •2.4.6.Виды нотаций er-диаграмм
- •2.4.6.1.Метод Баркера
- •2.4.6.2.Методология idef1x
- •2.4.7.Заключение
- •2.5.Проектирование реляционных баз данных с использованием семантических моделей: диаграммы классов языка uml
- •2.5.1.Общие сведения об uml
- •2.5.2.Основные понятия диаграмм классов uml
- •2.5.2.1.Классы, атрибуты, операции
- •2.5.2.2.Категории связей. Связь-зависимость
- •2.5.2.3.Связи-обобщения и механизм наследования классов в uml
- •2.5.2.4.Связи-ассоциации: роли, кратность, агрегация
- •2.5.3.Ограничения целостности и язык ocl
- •2.5.4.Получение схемы реляционной базы данных из диаграммы классов uml
- •2.5.5.Заключение
- •2.6.Case-системы проектирования информационных систем
- •2.6.1.Назначение и разновидности case-систем
- •3.Технологии манипулирования данными в бд. Основы sql.
- •3.1.Общие сведения о sql
- •3.2.Группы операторов sql
- •3.3.Средства определения схемы бд
- •3.3.1.Описание примера и используемого для учебных целей сервера бд
- •3.3.2.Создание бд
- •3.3.3.Типы данных и домены
- •3.3.4.Общий формат оператора создания таблиц
- •3.3.5.Ограничения целостности
- •3.3.6.Первичные и уникальные (альтернативные) ключи
- •3.3.7.Внешний ключ и определение ссылочной целостности
- •3.3.8.Требования к значениям столбцов
- •3.3.9.Изменение объявлений таблицы
- •3.3.10.Удаление таблицы
- •3.3.11.Работа с индексами Логическое разделение на ключи индексы:
- •Необходимость создания индексов:
- •3.4.Средства манипулирования данными
- •3.4.1.Оператор select
- •3.4.1.1.Общий формат оператора select
- •3.4.1.2.Использование предложения where для задания условия отбора
- •3.4.1.3.Использование предложения where. Внутреннее соединение таблиц.
- •3.4.1.4.Использование псевдонимов таблиц
- •3.4.1.5.Предложение order by – определение сортировки
- •3.4.1.6.Устранение повторяющихся значений
- •3.4.1.7.Расчет значений вычисляемых столбцов
- •3.4.1.8.Агрегатные функции
- •3.4.1.9.Группировка записей
- •3.4.1.10.Наложение ограничений на группировку записей
- •3.4.1.11.Оператор select: задание сложных условий поиска. Использование логических выражений
- •Сравнение столбца с результатом вычисления выражения
- •Использование between
- •Использование in
- •Использование функции upper
- •Использование like
- •Использование функции cast
- •3.4.1.12.Вложение подзапросов
- •Предложение exists.
- •Предложение singular.
- •Использование all, some (any).
- •Использование having и агрегатных функций для вложенных подзапросов
- •3.4.1.13.Внешние соединения
- •3.4.1.14.Объединение запросов – union
- •3.4.1.15.Использование is null
- •3.4.1.16.Использование операции сцепления строк
- •3.4.2.Оператор insert
- •3.4.2.1.Явное указание списка значений
- •3.4.2.2.Формирование значений при помощи оператора select
- •3.4.5.2.Способы формирования просмотра
- •3.4.5.3.Обновляемые и необновляемые просмотры
- •3.4.5.4.Дополнительные параметры просмотра
- •3.5.Работа с хранимыми процедурами
- •3.5.1.Понятие хранимой процедуры
- •3.5.2.Преимущества использования хп:
- •3.5.3.Создание хранимой процедуры
- •Оператор suspend
- •Оператор while … do
- •Оператор exit
- •Оператор execute procedure
- •Оператор post_event
- •3.5.5.Изменение и удаление хп
- •3.6.Работа с триггерами
- •3.6.1.Общие сведения о триггерах
- •3.6.2.Создание триггеров
- •3.6.3.Значения old и new
- •3.6.4.Изменение существующего триггера:
- •3.6.5.Удаление триггера:
- •3.6.6.Обеспечение каскадных воздействий с помощью триггеров
- •3.6.7.Использование триггеров для реализации бизнес-правил
- •3.7.Использование генераторов
- •3.8.Транзакции
- •3.8.1.Откат изменений и целостность бд
- •3.8.2.Понятие транзакции
- •3.8.3.Уровни изоляции транзакций
- •3.9.Физическое проектирование баз данных
- •3.9.1.Учет особенностей используемого сервера бд
- •3.9.2.Противоречия теории и практики нормализации
- •3.9.3.Денормализация для оптимизации
- •3.9.4.Оптимизация запросов
- •Оптимальная структура индексов
- •«Полезность» индекса
- •Целесообразность создания индексов
- •Частичное использование составного индекса
- •Многопоточность поиска по or и in
- •Уменьшение общего количества индексов.
- •4.Технологии построения информационных систем – приложений бд
- •4.1.Классификация архитектур построения приложений баз данных По технологии обработки данных
- •По способу доступа к данным
- •Файл-сервер.
- •Клиент-сервер.
- •Трехуровневая архитектура
- •4.2.Базовая архитектура сервера баз данных
- •4.3.Технологии доступа к данным
- •4.3.1.Открытый интерфейс доступа к базам данных – odbc Основа odbc
- •Архитектура odbc
- •Функции odbc api
- •4.3.2.Объектная модель ole db
- •4.4.Реализация доступа к базам данных с использованием Borland Delphi
- •4.4.1.Механизмы доступа к бд
- •Компоненты для доступа к данным, реализующие:
- •Визуальные компоненты, реализующие интерфейс пользователя;
- •4.4.2.Наборы данных
- •4.4.3.Классы библиотеки vcl Класс tdataset
- •Класс tdatasource
- •Класс ttable
- •Класс tquery
- •Класс tsqltable
- •Класс tupdatesql
- •Класс tdatabase
- •Класс tadoconnection
- •Классы компонентов управления данными
- •События, инициируемые для наборов данных
- •4.4.4.Применение многозвенных архитектур
- •5.Хранилища данных (DataWarehousing) и системы оперативной аналитической обработки данных
- •5.1.Технология хранилищ данных
- •5.1.1.Эволюция хранилищ данных
- •5.1.2.Концепция хранилищ данных
- •5.1.3.Отличия хранилищ данных от систем oltp
- •5.2.Оперативная аналитическая обработка (olap)
- •5.2.1.Связь olap и хд
- •5.2.2.Структура информационно-аналитической системы и место olap в ней
- •5.2.3.Многомерная модель данных
- •5.2.3.1.Концептуальная многомерная модель
- •5.2.3.2.Логическая многомерная модель
- •5.2.3.3.Агрегация данных
- •5.2.4.Архитектуры olap
- •5.2.4.1.О преимуществах и недостатках различных архитектур Реляционное хранилище
- •Многомерная бд
- •Смешанный вариант
- •5.2.5.Использование технологии olap
- •6.Литература
2.5.3.Ограничения целостности и язык ocl
Как уже отмечалось, в диаграммах классов могут указываться ограничения целостности, которые должны поддерживаться в проектируемой БД. В UML допускаются два способа определения ограничений: на естественном языке и на языке OCL. На Рис. 70 показана простая диаграмма классов Студент и Университет с ограничением, выраженным на естественном языке.
Рис. 70. Ограничение, выраженное на естественном языке
В данном случае накладывается ограничение на состояние объектов классов Студент и Университет, входящих в один экземпляр ассоциации. Объект класса Студент может входить в экземпляр связи с объектом класса Университет только при условии, что размер стипендии данного студента находится в диапазоне, допустимом в данном университете.
2.5.4.Получение схемы реляционной базы данных из диаграммы классов uml
Если не обращать внимания на различия в терминологии, то здесь выполняются практически те же шаги, что и в случае преобразования в схему реляционной БД ER-диаграммы. Поэтому ограничимся только некоторыми рекомендациями, специфичными для диаграмм классов.
Рекомендация 1. Прежде чем определять в классах операции, подумайте, что вы будете делать с этими определениями в среде целевой РСУБД. Если в этой среде поддерживаются хранимые процедуры, то, возможно, некоторые операции могут быть реализованы именно с помощью такого механизма. Но если в среде РСУБД поддерживается механизм определяемых пользователями функций, возможно, он окажется более подходящим.
Рекомендация 2. Помните, что сравнительно эффективно в РСУБД реализуются только ассоциации видов «один ко многим» и «многие ко многим». Если в созданной диаграмме классов имеются ассоциации «один к одному», следует задуматься о целесообразности такого проектного решения. Реализация в среде РСУБД ассоциаций с точно заданными кратностями ролей возможна, но требует определения дополнительных триггеров, выполнение которых понизит эффективность.
Рекомендация 3. Для технологии реляционных БД агрегатные и в особенности композитные ассоциации неестественны. Подумайте о том, что вы хотите получить в реляционной БД, объявив некоторую ассоциацию агрегатной. Скорее всего, ничего.
Рекомендация 4. В спецификации UML говорится о том, что, определяя однонаправленные связи, вы можете способствовать эффективности доступа к некоторым объектам. Для технологии реляционных баз данных поддержка такого объявления вызовет дополнительные накладные расходы и тем самым снизит эффективность.
Диаграммы классов UML – это мощный инструмент для создания концептуальных схем баз данных, но, как известно, все хорошо в меру.
2.5.5.Заключение
Нельзя сказать, что проектирование баз данных на основе семантических моделей в любом случае ускоряет и/или упрощает процесс проектирования. Все зависит от сложности предметной области, квалификации проектировщика и качества вспомогательных программных средств. Но так или иначе этап диаграммного моделирования обеспечивает следующие преимущества:
на раннем этапе проектирования до привязки к конкретной РСУБД проектировщик может обнаружить и исправить логические недочеты проекта, руководствуясь наглядным графическим представлением концептуальной схемы;
окончательный вид концептуальной схемы, полученной непосредственно перед переходом к формированию реляционной схемы, а может быть, и промежуточной версии концептуальной схемы, должен стать частью документации целевой реляционной БД; наличие этой документации очень полезно для сопровождения и, в особенности, для изменения схемы БД в связи с изменившимися требованиями;
при использовании CASE-средств концептуальное моделирование БД может стать частью всего процесса проектирования целевой информационной системы, что должно способствовать правильной структуризации процесса, эффективности и повышению качества проекта в целом.
Мы также хотели показать, что в контексте проектирования реляционных БД структурные методы проектирования, основанные на использовании ER-диаграмм, и объектно-ориентированные методы, основанные на использовании языка UML, различаются, главным образом, лишь терминологией. ER-модель концептуально проще UML, в ней меньше понятий, терминов, вариантов применения. И это понятно, поскольку разные варианты ER-моделей разрабатывались именно для поддержки проектирования реляционных БД, и ER-модели почти не содержат возможностей, выходящих за пределы реальных потребностей проектировщика реляционной БД.
Язык UML принадлежит объектному миру. Этот мир гораздо сложнее (если угодно, непонятнее, запутаннее) реляционного мира. Поскольку UML может использоваться для унифицированного объектно-ориентированного моделирования всего чего угодно, в этом языке содержится масса различных понятий, терминов и вариантов использования, избыточных с точки зрения проектирования реляционных БД. Если вычленить из общего механизма диаграмм классов то, что действительно требуется для проектирования реляционных БД, то мы получим в точности ER-диаграммы с другой нотацией и терминологией.
Поэтому выбор конкретной концептуальной модели – это вопрос вкуса и сложившихся обстоятельств. Понятно, что если в организации уже имеется сложившаяся инфраструктура проектирования приложений, то разумно продолжать ею пользоваться до тех пор, пока это не станет тормозом. При построении же новой инфраструктуры стратегические соображения высшего руководства компании имеют больший вес, чем предпочтения технических специалистов, хотя эти предпочтения тоже обязательно должны учитываться.