Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы 1 экзамен.docx
Скачиваний:
66
Добавлен:
02.09.2019
Размер:
222.2 Кб
Скачать

6) Оксидный катод: классификация, свойство, структура

Оксидный катод изготовляется из никеля или платины и покрывается окисями металлов бария, стронция, кальция. Рабочая температура его 800° (красный накал), эмиссия значительно больше, чем у вольфрамового и карбидированного катодов. Этот катод широко применяется в различных лампах, но не пригоден для непрерывной работы при высоких анодных напряжениях.

Он выдерживает небольшой перекал, но зато понижение накала не следует допускать, так как оно может создать частичное разрушение оксидного слоя или даже перегорание катода вследствие возникновения в оксидном слое местных очагов перегрева . Оксидный катод с успехом используется для импульсной работы. При кратковременном действии высоких анодного и сеточного напряжений от него можно получить эмиссию, во много раз большую, чем при непрерывной работе. Но после каждого импульса необходимо давать катоду «отдых», чтобы в оксидном слое накопилось достаточное количество электронов, необходимое для создания следующего импульса.

Долговечность оксидного катода определяется тем, что оксидный слой постепенно обедняется атомами бария. Для хорошей работы оксидного катода очень важен высокий вакуум, так как оксидный слой разрушается от ионной бомбардировки. Во избежание чрезмерной ионной бомбардировки нельзя допускать слишком высокое анодное напряжение при работе катода в непрерывном режиме.

Для оксидного катода опасен не только перекал, но и недокал, при котором могут возникнуть очаги перегрева. Катод прямого накала при этом нередко "перегорает", т. е. вблизи одного из очагов перегрева основной металл катода плавится. Это явление объясняется следующими особенностями:

А.У оксидного слоя, как и у всех полупроводников, при повышении температуры сопротивление уменьшается.

Б.Вследствие большого сопротивления оксидного слоя его нагрев катодным током соизмерим с нагревом от тока накала.

В.Различные участки оксидного слоя неодинаковы по сопротивлению и эмиссионной способности. Катодный ток распределяется так, что на участки с меньшим сопротивлением и большей эмиссионной способностью идут большие токи. На этих участках нагрев усиливается, уменьшается сопротивление, увеличивается выход электронов и происходит дальнейшее возрастание тока.

7) Вах оксидного катода.

На рис. 153 представлены вольт-амперные характеристики для двух температур оксидного катода: Т1 и T2, причем Т2>Т1. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмитируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля. Для увеличения тока насыщения нужно повысить температуру катода, увеличив силу тока накала. При напряжении между катодом и анодом, равном нулю, вылетевшие из катода электроны образуют вокруг него электронное облако (пространственный отрицательный заряд), отталкивающее вылетающие из катода электроны. Большинство электронов возвращается на катод, и лишь незначительное их число достигает анода. С увеличением Ua число электронов, достигающих анода, увеличивается и электронное облако постепенно уменьшается. Когда же все термоэлектроны, вылетающие из катода, попадают на анод, сила анодного тока достигает насыщения