
- •1 Вопрос
- •5) Отжиг изделий для электровакуумных приборов
- •6) Газовое травление
- •7) Ионное и плазмохимическое травление
- •8) Особенности очистки стеклянных и керамических деталей
- •1)Стекло в электронике. Особенности стеклообразного состояния. Классификация стекол по составу.
- •2) Классификация стекол по техническому назначению
- •3) Кристаллохимическое описание строения стекол. Силикатное и кварцевое стекло.
- •4) Кристаллохимическое описание строения стекол. Бинарные щелочно-силикатные стекла и фосфатные стекла.
- •5) Физико-химические основы получения изделий из стекольных расплавов
- •6) Сырьевые материалы для производства стекла. Приготовление шихты. Пороки стекла.
- •7) Основы технологии изготовления стеклоизделий или формование.
- •8) Свойства и характеристики стекла(электрические, теплофизические, оптические).
- •9 ) Ситаллы: понятие, свойства, виды, получение, применение.
- •10 ) Керамика: понятие, структура, свойства, применение.
- •11) Особенности технологического цикла изготовления керамического изделия
- •12) Виды установочной и конденсаторной керамики
- •2 Вопрос
- •9) Свойства и получение порошкового вольфрама и вольфрамовой проволоки из него
- •10) Свойства и получение порошкового Молибдена
- •11) Свойства и получение порошкового тантала и ниобия
- •12) Свойства и получение порошкового никеля
- •13) Свойства и получение порошкового рения
- •15) Свойства и получение хрома
- •16) Свойства и получение платины и палладия
- •17) Свойства и получение меди и алюминия
- •18) Свойства и получение золота и серебра
- •19)Свойства и получение иридия
- •20)Свойства и получение индия
- •1)Основной характеристикой катода
- •3 Торированный катод.
- •4) Процессы активации и дезактивации в Торированном катоде
- •5) Карбидированный w-катод
- •6) Оксидный катод: классификация, свойство, структура
- •7) Вах оксидного катода.
- •8) Режимы работы оксидного катода
- •18.Импрегнированные w-Ba катоды.
6) Оксидный катод: классификация, свойство, структура
Оксидный катод изготовляется из никеля или платины и покрывается окисями металлов бария, стронция, кальция. Рабочая температура его 800° (красный накал), эмиссия значительно больше, чем у вольфрамового и карбидированного катодов. Этот катод широко применяется в различных лампах, но не пригоден для непрерывной работы при высоких анодных напряжениях.
Он выдерживает небольшой перекал, но зато понижение накала не следует допускать, так как оно может создать частичное разрушение оксидного слоя или даже перегорание катода вследствие возникновения в оксидном слое местных очагов перегрева . Оксидный катод с успехом используется для импульсной работы. При кратковременном действии высоких анодного и сеточного напряжений от него можно получить эмиссию, во много раз большую, чем при непрерывной работе. Но после каждого импульса необходимо давать катоду «отдых», чтобы в оксидном слое накопилось достаточное количество электронов, необходимое для создания следующего импульса.
Долговечность оксидного катода определяется тем, что оксидный слой постепенно обедняется атомами бария. Для хорошей работы оксидного катода очень важен высокий вакуум, так как оксидный слой разрушается от ионной бомбардировки. Во избежание чрезмерной ионной бомбардировки нельзя допускать слишком высокое анодное напряжение при работе катода в непрерывном режиме.
Для оксидного катода опасен не только перекал, но и недокал, при котором могут возникнуть очаги перегрева. Катод прямого накала при этом нередко "перегорает", т. е. вблизи одного из очагов перегрева основной металл катода плавится. Это явление объясняется следующими особенностями:
А.У оксидного слоя, как и у всех полупроводников, при повышении температуры сопротивление уменьшается.
Б.Вследствие большого сопротивления оксидного слоя его нагрев катодным током соизмерим с нагревом от тока накала.
В.Различные участки оксидного слоя неодинаковы по сопротивлению и эмиссионной способности. Катодный ток распределяется так, что на участки с меньшим сопротивлением и большей эмиссионной способностью идут большие токи. На этих участках нагрев усиливается, уменьшается сопротивление, увеличивается выход электронов и происходит дальнейшее возрастание тока.
7) Вах оксидного катода.
На рис. 153 представлены вольт-амперные характеристики для двух температур оксидного катода: Т1 и T2, причем Т2>Т1. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмитируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля. Для увеличения тока насыщения нужно повысить температуру катода, увеличив силу тока накала. При напряжении между катодом и анодом, равном нулю, вылетевшие из катода электроны образуют вокруг него электронное облако (пространственный отрицательный заряд), отталкивающее вылетающие из катода электроны. Большинство электронов возвращается на катод, и лишь незначительное их число достигает анода. С увеличением Ua число электронов, достигающих анода, увеличивается и электронное облако постепенно уменьшается. Когда же все термоэлектроны, вылетающие из катода, попадают на анод, сила анодного тока достигает насыщения