
- •1.1. Мультиплексор.
- •1.2. Операционный усилитель. Характеристики идеального оу. Обозначение на схемах.
- •2.2. Применение оу. Дифференциальный усилитель (вычитатель).
- •3.1. Обратные связи (4 типа).
- •3.2. Применение оу. Инвертирующий усилитель.
- •4.1. Дешифратор. Применение.
- •4.2. Применение оу. Неинвертирующий усилитель.
- •5.1. Асинхронные счётчики.
- •5.2. Применение оу. Повторитель напряжения (Буферный усилитель).
- •6.1. Счетчик, определение. Классификация.
- •6.2. Применение оу. Суммирующий усилитель.
- •7.1. Асинхронные счётчики.
- •7.2. Применение оу. Интегратор.
- •8.1. Синхронные счётчики.
- •8.2. Применение оу. Дифференциатор.
- •9.1. Регистр. Классификация.
- •9.2. Применение оу. Компаратор.
- •10.2. Цап. Применение.
- •11.1. Шифратор. Применение.
- •11.2. Типы цап.
- •12.1. Шифратор. Применение.
- •12.2. Характеристики цап.
- •13.1. Дешифратор. Применение.
- •13.2. Ацп. Применение.
- •14.1. Дешифратор. Применение.
- •14.2. Типы ацп.
- •15.1. Мультиплексор.
- •15.2. Характеристики ацп.
- •16.1. Демультиплексор.
- •17.1. Мультиплексор.
- •17.2. Цап с делителем типа r–2r.
- •18.1. Демультиплексор.
- •18.2. Ацп прямого преобразования (последовательного приближения).
- •19.2. Интегрирующий ацп.
- •20.1. Озу. Принципиальная схема однокоординатного озу типа 41.
- •20.2. Ацп прямого преобразования (последовательного приближения).
- •21.1. Мультиплексор.
- •21.2. Закон Ома. Законы Кирхгофа.
- •22.1. Счетчик, определение. Классификация.
- •22.2. Схема квантования.
- •23.1. Асинхронные счётчики.
- •23.2. Операционный усилитель. Характеристики идеального оу. Обозначение на схемах.
- •24.1. Синхронные счётчики.
- •24.2. Применение оу. Дифференциальный усилитель (вычитатель).
- •25.1. Шифратор. Применение.
- •25.2. Применение оу. Инвертирующий усилитель.
- •26.1. Счетчик, определение. Классификация.
- •26.2. Применение оу. Интегратор.
- •27.1. Асинхронные счётчики.
- •27.2. Типы цап.
- •28.2. Типы цап.
- •29.1. Мультиплексор.
- •29.2. Закон Ома. Законы Кирхгофа.
- •30.1. Демультиплексор.
- •30.2. Характеристики цап.
- •30.3. Характеристики цап.
24.2. Применение оу. Дифференциальный усилитель (вычитатель).
Н а рисунке представлена схема классического дифференциального усилителя, коэффициент усиления которого рассчитывается по формуле . Значение выходного напряжения рассчитывается по формуле . Не следует путать дифференциальный усилитель с дифференциатором. Данная схема предназначена для получения разности двух напряжений, при этом каждое из них предварительно умножается на некоторую константу (константы определяются резисторами). . Входное сопротивление (между входными выводами) . В случае, когда R1 = R2 и Rf = Rg, имеем: .
24.3.
Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).
Способ №1: N=10/2=5/2=2,5/2=1,25/2=0,625/2=0,3125/2=0,15625/2=0,078125/2=0,0390625/2=0,01953125/2=0,009765625/2=0,005В, итак N=11.
Способ №2:
10/2N=0,005 решим уравнение и найдём N.
10/0,005=2N //прологорифмируем Л. и П. части
ln(2000)=N*ln2
N=11.
25.1. Шифратор. Применение.
Шифраторы – микросхемы средней степени интеграции, предназначенные для перевода сигнала, поданного только в один входной провод, в выходной параллельный двоичный код, который появится на выходе шифратора. Чтобы шифратор откликался на входной сигнал только одного провода, его схему делают приоритетной. Тогда выходной код должен соответствовать номеру «старшего» входа, получившего сигнал. Предположим, активные уровни поступили на входы 3, 4, 9. Старший по номеру вход здесь 9, он обладает приоритетом, поэтому выходной код шифратора 1001. Шифраторы различают по емкости, по числу каналов, а также по формату входного кода (двоичный, двоично-десятичный). Шифраторы находят различные применение в вычислительной и информационно-измерительной технике. Одно из них – преобразование чисел, вводимых пользователем, например, на калькуляторе, в двоичный код. Шифраторы широко используются в разнообразных устройствах ввода информации в цифровые системы. Такие устройства могут снабжаться клавиатурой, каждая клавиша которой связана с определенным входом шифратора. При нажатии выбранной клавиши подается сигнал на определенный вход шифратора, и на его выходе возникает двоичное число, соответствующее выгравированному на клавише символу. Трёхразрядный шифратор и его временные диаграммы представлены ниже.
25.2. Применение оу. Инвертирующий усилитель.
Р езисторы, используемые в данных схемах, имеют типичное сопротивление порядка кОм. Использование резисторов с сопротивлением менее 1 кОм нежелательно, так как они могут вызвать чрезмерный ток, перегружающий выход ОУ. Резисторы более 1 МОм могут внести повышенный тепловой шум и сделать схему чувствительной к случайным ошибкам вследствие токов смещения. Инвертирует и усиливает напряжение (то есть умножает напряжение на отрицательную константу). . (Поскольку U— является виртуальной землей). Третий резистор с сопротивлением, равным (сопротивление параллельно соединенных резисторов Rf и Rin), устанавливаемый (при необходимости) между неинвертирующим входом и землей, уменьшает ошибку, возникающую из-за тока смещения.
25.3.
Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).
Способ №1:
N=10/2=5/2=2,5/2=1,25/2=0,625/2=0,3125/2=0,15625/2=0,078125/2=0,0390625/2=0,01953125/2=0,010, итак N=10.
Способ №2:
10/2N=0,010 решим уравнение и найдём N.
10/0,010=2N //прологорифмируем Л. и П. части
ln(1000)=N*ln2
N=10.