Скачиваний:
25
Добавлен:
01.05.2014
Размер:
589.82 Кб
Скачать

2.4 Двойственность звп

В формулировке теоремы Куна- Таккера прямые и двойственные переменные входят симметричным образом. Поэтому можно ожидать, что аналогичная симметрия существует и для задач оптимизации относительно прямых и двойственных переменных .

Введем функцию: g(x)=sup(x,), при 0

Тогда очевидно ,что

g(x) = f(x), если gi(x)0, i=1...m

g(x) =, в противном случае

Понятно, что (x,) = f(x)+(, g(x)),

Поэтому исходная ЗВП может быть записана в виде:

min g(x)-?, при xRn

Эту задачупринято называть прямой.

Поступим аналогичным образом, поменяв роль переменных и операций max и min. Обозначим h()= inf, при xRn

Задачу max h()-? при , называют двойственной.

Теорема двойственности:

Справедливы следующие соотношения двойственности:

1) f(x)h()xX,

2) Если выполнено условие т. Куна-Таккера, а пара (x*,*) является седловой точкой функции Лагранжа, то *-решение двойственной задачи.

* =argmax h(),при иf(x* )=h(*)

3)Если для допустимых x*, * : f(x*)=h(*), то

x* = argmin f(x), при xX

* = argmax h(),при 0

Доказательство:

1) f(x)f(x)+(,g(x))=(x,) inf (x, ) = h( ), при xRn

2) Для всех 0 справедливо соотношение:

h(*)= inf (x ,*) = (x* , *) (x* , ) inf(x,) = h(),при xRn

Отсюда *-решение двойственной задачи.

Но (x, *) = f(x*)h(*)=f(x*)

3) На основании 1) f(x)h(*) = (2)) f(x*)h()

тогда x*- прямое решение, *- двойственное решение

Продемонстрируем двойственность ЗВП на примере задачи линейного программирования (ЗЛП) , которая вкладывается в ЗВП.

Напомним, что функция f называется вогнутой, если f выпуклая функция, которая выпукла и вогнута одновременно, является афинной или линейной функцией.

2.4.1.Двойственность злп

X=xRn, x, Axbb-вектор размерности n, A- матрица размерности mn.

f(x) = (c, x)- целевая функция (линейна)

ЗЛП: min f(x)-?, при xX- прямая задача линейного программирования.

Построим функцию Лагранжа.

=(c, x)+( 1,b-Ax)+(  2,-x), 1Rm, 2Rn (подгоняем под gi(x)0).

Тогда min(c, x) = max inf (c, x)+( 1, b-Ax)+( 2, -x), при 10, 20, xRn = (см. метод модификации функции Лагранжа) = max inf (c- AT1-2, x)+( b, 1)

при 10, 20, xRn =

(1, Ax)=(AT2, x)

= max , при 10, 20

= max (b, 1) (при 10, 20, с=AT1+2) = max (b, 1) (при 10, с AT1)

= max (b, ) = (c, x*), с AT,  0

max (b, ), с AT,  0 - двойственная ЗЛП.

Таким образом, решение исходной ЗЛП может быть сведено к решению новой ЗЛП : максимизация (b, ) по множеству, определенному условиями с AT,

 0.

Утверждения:

  1. Вектор состояния  двойственной ЗЛП имеет размерность m- количество ограничений в исходной задаче (размерность вектора Ax).

  2. Количество ограничений (кроме  0, неотрицательных) совпадает с размерностью вектора состояний в исходной задаче (вектора x).

  3. Суммарное количество ограничений совпадает с (n + m) в обеих задачах.

  4. Двойственная задача к двойственной дает исходную.

Когда какую задачу решать - зависит от числа ограничений и от размерности x.

Утверждение:

Двойственные переменные можно рассматривать как коэффициент чувствительности целевой функции к изменению параметров задачи.

Пусть x* ,  *- решения прямой и двойственной задач, причем эти решения единственны (достиг. в одной точке минимум x и в одной максимум )

Тогда f(x*) = (b, *), несколько изменим b: bb+b  min увеличился на

(b, *). При сдвиге b градиенты не изменились, i остались теми же.

Обозначим h(b) = min f(x), Ax b, x 0.

Тогда при малых b:

h(b+b) = h(b) + (b, *), следовательно при b 0 получим:

, для компонент векторов

  1. Линейное программирование

  1. Основные понятия

ЗЛП : min f(x), xX

X={x Rn : g j(x) 0, j = 1...m}, f, g j - линейны для любого j.

Таким образом ЗЛП- частный случай ЗНП.

Определение:

Функция называется линейной, если справедливо:

f(1x1+ 2x2) = 1f(x1) + 2f(x2), где iR, xiX.

В n-мерном пространстве линейная функция может быть определена так:

f(x) = (c,x)

f(x) = c1x1+ ....+ cnxn

Ограничения

Расширим класс задач

,

то есть передвинуть область в n-мерном пространстве.

Определение:

Если при задании допустимого множества X используются только неравенства, то это ЗЛП в стандартной форме.

Определение:

Если при задании X используются только равенства, то это .

Соседние файлы в папке Конспект по методам оптимизации в формате doc