- •Понятие о деформациях, ее типы.
- •Механизм разрушения горных пород, напряженное состояние земной коры
- •Слой и слоистость. Взаимоотношение слоистых толщ. Трансгрессивное и регрессивное залегание отложений, их образование и выражение в геологическом разрезе.
- •Типы несогласий, их происхождение и выражение в разрезе. Тектонические движения геологического прошлого.
- •6.Складчатые деформации. Элементы складки, типы и формы складок, их образование
- •5.Образование границы типа «твердый грунт» (hard ground) и ее геологическое значение
- •Складки в плане, замыкания складок, их значение для построения профилей
- •Физические условия возникновения разрывов в горных породах, элементы сброса, типы разрывных нарушений
- •Взбросы, надвиги, покровы, сдвиги. Элементы, образование, происхождение
- •Понятие о землетрясении, примеры катастрофических землетрясений, Спитакское землетрясение 1988 г.
- •Параметры землетрясения.
- •Интенсивность землетрясений и шкалы ее оценки
- •Геологические обстановки возникновения землетрясений, сейсмофокальные зоны Беньоффа, географическое распространение землетрясений
- •Прогноз землетрясений, понятие о разных типах сейсмического районирования
- •Цунами, условия возникновения, примеры, прогноз
- •Магнитное поле Земли, его происхождение, инверсии и палеомагнитный метод для решения геологических задач. Примеры.
- •Понятие о расслоенности земной коры, свойства нижней коры, сейсмическая томография и строение верхней мантии
- •Строение офиолитовой ассоциации и ее значение для геодинамических реконструкций (примеры)
- •21.Сравнительный анализ строения офиолитовой ассоциации и коры океанического типа, значение для геодинамических реконструкций
- •Геосинклинальная концепция, ее становление, развитие и недостатки
- •22.Каким образом появление палеомагнитного метода способствовало возрождению идей а.Вегенера?
- •Каким образом вулканизм активных континентальных окраин связан с процессами субдукции и чем он отличается от вулканизма других структурных единиц?
- •Какова связь островных дуг, глубоководных желобов и окраинных (задуговых) морей? Чем такая связь может быть обусловлена и в чем проявляться?
- •Какой возраст имеет земная кора океанов и как можно объяснить их происхождение?
- •Какие отложения, структуры и магматизм наиболее характерны для древних платформ?
- •Строение земной коры и верхней мантии, их расслоенность и значение для понимания процессов тектоники литосферных плит
- •Характеристика континентов и океанов как важнейших структур земной коры
- •Как возникла идея о спрединге океанической коры и как он происходит?
- •Линейные вулканические архипелаги, их происхождение и строение, понятие о «горячих точках» и их значение для тектоники литосферных плит
- •Строение активных континентальных окраин и их генезис в теории тектоники литосферных плит
- •Тектоника литосферных плит, истоки, развитие и содержание
- •Какие типы извержений наиболее характерны для активных континентальных окраин? с чем можно связать современный вулканизм в этих структурах?
- •Эпиплатформенные орогенические пояса и особенности их строения, примеры
- •Понятие о геологических реконструкциях, применение метода актуализма, примеры
- •Воздействие человека на природные процессы, примеры, состояние и прогноз на будущее
- •Основные закономерности развития земной коры
- •Понятие нелинейности в геологии
Основные структурные элементы платформ, их выражение, возраст платформ Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами. В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной. Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой складчатости. Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 %. Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом. Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков.
Понятие о расслоенности земной коры, свойства нижней коры, сейсмическая томография и строение верхней мантии
Земная кора ограничивается снизу очень четкой поверхностью скачка скоростей волн Р и S, впервые установленной геофизиком Мохоровичечем и получившей его имя: поверхность Мохоровичича, или Мохо, или, совсем кратко, поверхность М. Вторая глобальная сейсмическая граница раздела находится на глубине 2900 км и была выделена немецким геофизиком Гутенбергом и также получила его имя. Эта поверхность отделяет мантию Земли от ядра. На глубине 5120 км снова происходит скачкообразное увеличение скорости волн Р, а путем применения особого метода показано, что там появляются и волны S, т.е. эта часть ядра - твердая. Таким образом, внутри Земли устанавливается 3 глобальные сейсмические границы, разделяющие земную кору и мантию (граница М), мантию и внешнее ядро (граница Гутенберга), внешнее и внутреннее ядро. В последние годы была установлена еще одна глобальная сейсмическая граница на глубине 670 км, отделяющая верхнюю мантию от нижней и являющаяся очень важной для понимания процессов, идущих в верхних оболочках Земли. Ниже поверхности Мохо, скорости сейсмических волн увеличиваются, но на некотором уровне, различном по глубине под океанами и материками, вновь уменьшаются, хотя и незначительно, причем скорость поперечных волн уменьшается больше. В этом слое отмечено повышение электропроводности что свидетельствует о состоянии вещества, отличающегося от выше и нижележащих слоев верхней мантии. Особенности этого слоя- астеносфера объясняются возможным его плавлением в пределах 1-2%, что обеспечивает понижение вязкости и увеличение электропроводности. Астеносферный слой расположен ближе всего к поверхности под океанами, от 10-20 км до 80-200 км, и глубже, от 80 до 400 км под континентами, причем залегание астеносферы глубже под более древними геологическими структурами. Земная кора и часть верхней мантии над астеносферой носит название литосфера. Литосфера холодная, поэтому она жесткая и может выдержать большие нагрузки. Сейсмическая томография позволяет «увидеть» очень незначительные плотностные неоднородности в мантии. Сейсмическая томография базируется на измерении скоростей объемных и поверхностных сейсмических волн, распространение которых направлено таким образом, чтобы «просветить» какое-то непрозрачное тело, например, массив горных пород, который нельзя наблюдать непосредственно. Астеносфера, подстилающая литосферу, также обладает неоднородностью в горизонтальном направлении и изменчивой мощностью. Пониженные скорости сейсмических волн в астеносфере хорошо объясняется плавлением всего лишь 2-3% вещества. Астеносферный слой по современным представлениям играет важнейшую роль в тектонической и магматической активности литосферных плит и обеспечивает их изостатическое равновесие, несмотря на то, что сам слой может быть прерывистым, например, отсутствуя под древними докембрийскими платформами.
