
- •Введение
- •Общие указания к выполнению лабораторных работ
- •Техника безопасности
- •Оборудование и реактивы
- •Основные термины и понятия, необходимые для освоения данной работы
- •Описание метода эксперимента
- •Проведение эксперимента
- •Обработка результатов измерений
- •Не самопроизвольная первичная кристаллизация
- •Форма кристаллов и строение слитков
- •Устройство микроскопа Levenhuk 740
- •Использование микроскопа
- •Литература
- •Основные термины и понятия, необходимые для освоения лабораторной работы
- •Состав, структура и классификация сталей
- •Металлографический анализ
- •Дефекты сварных швов
- •Микроскопическое исследование
- •Микроструктуры железоуглеродистых сплавов (схемы структур)
- •Металлографический микроскоп и микроскринер
- •Задание
- •Контрольные вопросы и задачи
- •Основные теоретические положения
- •Структурные составляющие железоуглеродистых сплавов
- •Критические точки сплавов
- •Превращение в диаграмме Fe–Fe3c
- •Последовательность образования равновесной структуры
- •Задания
- •Контрольные задания
- •Вопросы для повторения
- •Обработка результатов, их обобщение и выводы
- •Основные термины и понятия, необходимые для освоения лабораторной работы
- •Теоретические основы испытания материалов на ударную вязкость
- •Работа удара
- •Ударная вязкость
- •Размерность
- •Виртуальный лабораторный комплекс Активные клавиши
- •Маятниковый копер мк-зоа
- •Стол с испытуемыми образцами
- •Контрольные вопросы
- •Список литературы
- •Обработка результатов, их обобщение и выводы
- •Теоретические основы испытания материалов на сжатие
- •Размерность
- •Виртуальный лабораторный комплекс Активные клавиши
- •Пресс гидравлический (псу-10)
- •Контрольные вопросы:
- •Обработка результатов, их обобщение и выводы
- •Основные термины и понятия, используемые в лабораторной работе
- •Теоретические основы испытания материалов на растяжение
- •Показатели прочности
- •Показатели пластичности
- •Литература
- •Цель работы
- •Рабочее задание
- •Проведение испытания
- •Обработка результатов, их обобщение и выводы
- •Размерность
- •Порядок оформления отчёта
- •Основные термины и понятия
- •Теоретические основы испытания материалов на кручение
- •Испытательная машина км-50-1.
- •Контрольные вопросы
- •Литература
- •Цель работы
- •Рабочее задание
- •Проведение испытания
- •Обработка результатов, их обобщение и выводы
- •Порядок оформления отчёта
- •Виртуальный лабораторный комплекс Активные клавиши
- •Основные термины и понятия
- •Теоретические основы испытания материалов на изгиб
- •Контрольные вопросы
- •Оборудование и материалы
- •Порядок выполнения работы
- •Обработка результатов, их обобщение и выводы
- •Порядок оформления отчета
- •Основные термины и определения
- •Теоретические основы термической обработки сталей
- •Назначение и условия проведения основных видов термической обработки
- •Описание установок
- •Параметры процессов термической обработки
- •Контрольные вопросы
- •Контрольные задания
- •Литература
- •Задачи по разработке технологического процесса термической обработки конструкционных, инструментальных и специальных сталей и чугунов.
- •Термины основных свойств металлов
Металлографический микроскоп и микроскринер
Микроскоп модели МИМ-7 предназначен для визуального анализа и фотографирования микроструктуры в светлом и темном поле с использованием обычного или поляризованного света. Его оптическая схема приведена на рис. 3.2.
Рис. 3.2. Оптическая схема микроскопа МИМ-7
Набор объективов и окуляров обеспечивает полезное увеличение анализируемой структуры в пределах «60х-1440х». В качестве источника света используется кинопроекционная лампа К-30 (17B, 170Вт).
Нить накала осветителя 1 посредством коллектора 2 проектируется в плоскости апертурной диафрагмы 3, предназначенной для регулирования контрастности изображения. Далее световой поток системой из линз 6 и 10, пента призмы 9 и полупрозрачной отражательной пластинки 11 направляется в оптику объектива 12. Пройдя ее, он попадает на поверхность микрошлифа 13. Проинтерферировав с ее микрорельефом, отраженные лучи вновь проходят линзу 14 и, отразившись от зеркала 15, попадают в оптику визуального окуляра 16, ахроматическая линза 14 образует увеличенное изображение анализируемого объекта в фокальной плоскости окуляра 16, увеличение видимого в окуляре объекта численно выражается произведением кратностей объекта и окуляра. Полевая диафрагма 7 предназначена для ограничения наблюдаемого участка анализируемого объекта. Для фотографирования микроструктуры зеркало 15 сдвигается в сторону. Тогда поток лучей проходит через фотоокуляр 17, а, отразившись от зеркала 18, попадает на матовое стекло 19.
Масштаб фотографируемого изображения определяется при помощи объектива микрометра, представляющего собой пластинку с эталонным миллиметром, разделенным на сто частей. Его кладут вместо микрошлифа на столик микроскопа. По его изображению на матовом стекле с нанесенной на нем масштабной линейкой искомый масштаб фотографируемого изображения подсчитывается по формуле:
V = l / (0,01∙z),
где z – число делений объект-микрометра на длине l мм масштабной линейки матового стекла. При отсутствии масштабной линейки на матовом стекле удобнее пользоваться штангенциркулем.
Микроскоп состоит из 4-х основных узлов:
Осветителя, установленного на направляющие основания;
Корпуса прибора с фотокамерой и углом апертурой диафрагмы;
Верхней части с иллюминатором, визуальным тубусом и механизмами грубой подачи столика и микрометрической подачи объектива;
Предметного столика микроскопа.
Анализируемый микрошлиф помещается на предметном столике микроскопа рабочей поверхностью вниз. Грубая или предварительная настройка резкости изображения осуществляется рукояткой 14 (рис. 3.3.). А после ее закрепления стопорной рукояткой, расположенной с левой стороны прибора, барашком микрометрической подачи объектива 4 добиваются необходимой четкости изображения, микроструктуры в поле зрения визуального окуляра 5.
Рис. 3.3. Общий вид прибора МИМ-7
При использовании для микроанализа микроскринера оптическая схема будет иметь другой вид рис. 3.4.
Рис. 3.4. Оптическая схема микроскринера
При наблюдении в светлом поле лучи от источника света проходят через коллектор, теплофильтр, светофильтр, осветительную линзу, диафрагмы, ахроматическую линзу, отражаются от плоскопараллельной полупрозрачной пластины и направляются через объектив на объект.
Лучи, отраженные от поверхности объекта, снова проходят через объектив, который проецирует совместно с дополнительной тубусной линзой изображение объекта в плоскость электронного приемника оптического изображения, отражаясь от светоделительной пластинки, а также в фокальную плоскость окуляров. С помощью системы призм изменяется направление оптической оси микроскопа. Призменный блок насадки разделяет пучок лучей и обеспечивает возможность бинокулярного наблюдения объекта. Сменные светофильтры повышают контрастность исследуемого объекта.
Общий вид микроскринера представлен на рисунке 3.5.
В состав микроскринера входят: осветитель отраженного света, штатив с встроенными механизмом фокусировки и блоком питания лампы, револьверное устройство, координатный предметный столик, насадка (с экраном).
При массовых контрольных анализах качества всех металлических конструкционных материалов ГОСТ предусматривает контроль величины зерна. Он производится при 100-кратном увеличении путем сравнения видимой в окуляре микроструктуры со стандартной шкалой баллов зернистости.
Так, для сталей перлитного класса ГОСТом предусмотрена оценка величины зерна по 10-ти бальной шкале. В ее основе лежит эмпирическая формула:
N = 2000 3(n–8), мм–2,
где N– балл величины зерна, n– число зерен на 1 мм2 шлифа.
Пользуясь известным правилом рычага, по равновесной микроструктуре углеродистой доэвтектоидной стали можно с достаточной точностью определить количество содержащегося в ней углерода. Для этого визуально определяется количество перлитной составляющей структуры стали в поле зрения окуляра в процентах, а затем по формуле С = [(% перлита-0,8) / 100]% подсчитывают содержание углерода в анализируемой стали.
Рис. 3.5. Общий вид микроскринера