
- •Введение
- •Общие указания к выполнению лабораторных работ
- •Техника безопасности
- •Оборудование и реактивы
- •Основные термины и понятия, необходимые для освоения данной работы
- •Описание метода эксперимента
- •Проведение эксперимента
- •Обработка результатов измерений
- •Не самопроизвольная первичная кристаллизация
- •Форма кристаллов и строение слитков
- •Устройство микроскопа Levenhuk 740
- •Использование микроскопа
- •Литература
- •Основные термины и понятия, необходимые для освоения лабораторной работы
- •Состав, структура и классификация сталей
- •Металлографический анализ
- •Дефекты сварных швов
- •Микроскопическое исследование
- •Микроструктуры железоуглеродистых сплавов (схемы структур)
- •Металлографический микроскоп и микроскринер
- •Задание
- •Контрольные вопросы и задачи
- •Основные теоретические положения
- •Структурные составляющие железоуглеродистых сплавов
- •Критические точки сплавов
- •Превращение в диаграмме Fe–Fe3c
- •Последовательность образования равновесной структуры
- •Задания
- •Контрольные задания
- •Вопросы для повторения
- •Обработка результатов, их обобщение и выводы
- •Основные термины и понятия, необходимые для освоения лабораторной работы
- •Теоретические основы испытания материалов на ударную вязкость
- •Работа удара
- •Ударная вязкость
- •Размерность
- •Виртуальный лабораторный комплекс Активные клавиши
- •Маятниковый копер мк-зоа
- •Стол с испытуемыми образцами
- •Контрольные вопросы
- •Список литературы
- •Обработка результатов, их обобщение и выводы
- •Теоретические основы испытания материалов на сжатие
- •Размерность
- •Виртуальный лабораторный комплекс Активные клавиши
- •Пресс гидравлический (псу-10)
- •Контрольные вопросы:
- •Обработка результатов, их обобщение и выводы
- •Основные термины и понятия, используемые в лабораторной работе
- •Теоретические основы испытания материалов на растяжение
- •Показатели прочности
- •Показатели пластичности
- •Литература
- •Цель работы
- •Рабочее задание
- •Проведение испытания
- •Обработка результатов, их обобщение и выводы
- •Размерность
- •Порядок оформления отчёта
- •Основные термины и понятия
- •Теоретические основы испытания материалов на кручение
- •Испытательная машина км-50-1.
- •Контрольные вопросы
- •Литература
- •Цель работы
- •Рабочее задание
- •Проведение испытания
- •Обработка результатов, их обобщение и выводы
- •Порядок оформления отчёта
- •Виртуальный лабораторный комплекс Активные клавиши
- •Основные термины и понятия
- •Теоретические основы испытания материалов на изгиб
- •Контрольные вопросы
- •Оборудование и материалы
- •Порядок выполнения работы
- •Обработка результатов, их обобщение и выводы
- •Порядок оформления отчета
- •Основные термины и определения
- •Теоретические основы термической обработки сталей
- •Назначение и условия проведения основных видов термической обработки
- •Описание установок
- •Параметры процессов термической обработки
- •Контрольные вопросы
- •Контрольные задания
- •Литература
- •Задачи по разработке технологического процесса термической обработки конструкционных, инструментальных и специальных сталей и чугунов.
- •Термины основных свойств металлов
Микроскопическое исследование
Метод основан на применении оптических микроскопов, работающих по принципу отраженного света, с полезным увеличением «60х-2000х». Основные элементы микроструктуры: зерно, фрагмент зерна, блоки, микровключения (их форма, размеры, количество и взаимное расположение), границы зерен, линии сдвига, полосы скольжения, микротрещины и микропоры.
Анализ микроструктуры производится с помощью микрошлифов, рабочие поверхности которых в форме ровной площадки после тщательной шлифовки полируются до зеркального блеска. Затем они подлежат промывке чаще спиртом, и сушке обычной фильтровальной бумагой.
При анализе такой отполированной поверхности под микроскопом выявляются присутствующие в металле неметаллические включения (сульфиды, шлак, окислы, силикаты, графит и др.), рыхлоты и микротрещины. Все они легко выявляются потому, что взаимодействуют со световым потоком иначе, чем зеркально гладкая металлическая поверхность.
Действительную микроструктуру анализируемого металла можно увидеть лишь после травления поверхности микрошлифа соответствующим реактивом. Реактив растворяет металл, прежде всего, по границам зерен. Дело в том, что здесь в тонком слое, не более 2-3 межатомных расстояний, атомы занимают компромиссное положение относительно кристаллических решеток контактирующих зерен. Меньший порядок взаимного расположения в совокупности с присутствием чужеродных примесных атомов и обусловливает обычно большую скорость растворения границ зерен химическими реактивами. При этом они, естественно, углубляются, как схематически показано на рис. 2.9, а, и световые лучи, попав на них, рассеиваются. Поэтому в поле зрения окуляра границы зерен выглядят в виде ажурного темного контура, окаймляющего сравнительно светлые зерна (рис. 2.9, б).
а б
Рис. 2.9. Схема отражения световых лучей от поверхности шлифа (а) и видимой при этом зернистой структуры (б).
Сами зерна, если они совершенно однородны и по химическому составу и по структуре, например, в чистом металле, кристаллографически относительно поверхности микрошлифа ориентируется, случайно. Благодаря анизотропии свойств, поверхности двух рядов расположенных зерен будут растравливаться реактивом с разной скоростью. Соответственно на каждом из них образуется тончайший микрорельеф с разной рассеивающей способностью лучей света. Это придает каждому зерну индивидуальность тона освещенности.
У чистых металлов и однофазных сплавов разница в тоне освещенности между зернами сравнительно мала, но может быть достаточно велика в сплавах с двухфазным или многофазным строением. Нередко травление производят специальными реактивами, которые окрашивают разные фазовые составляющие структуры в соответствующие цвета.
Возможны случаи, когда оба структурные составляющие одного зерна одинаково хорошо сопротивляются действию реактива и растворяется лишь граница между ними. Примером тому служат в стали зерна перлита, в которых тонкие пластинки феррита и цементита чередуются между собой. Применяющийся обычно для травления стальных микрошлифов 3-5%-ный раствор азотной кислоты в спирте растравливает только границу между ними (рис. 2.6, а). Поэтому под микроскопом их пластинки в перлитном зерне выглядят светлыми, а тончайшая граница между ними темной. Если толщина пластинок феррита и цементита в плоскости шлифа около 0,6 ммк и более, то под микроскопом хорошо видна пластинчатая структура перлитных зерен (рис. 2.6, б). Когда указанные пластинки по размеру меньше 0,6 ммк, т.е. за пределами разрешающей способности оптического микроскопа перлитные зерна выглядят темными с относительно однородной тональностью фона в пределах границ отдельно взятого зерна.
а б
Рис. 2.9. Схема, иллюстрирующая травление перлитного зерна (а) и зернистую структуру доэвтектоидной стали (6).