- •Задание на курсовой проект по деталям машин Шифр кп 2068998.15.Д1.08.04.01.00.00.000пз
- •Содержание
- •Список использованных источников___________________________________________ введение
- •1. Кинематический расчет привода.
- •1.1. Определение недостающих геометрических параметров исполнительного механизма.
- •1.2. Определение потребной мощности и выбор электродвигателя.
- •1.2.1. Определяем номинальный вращающий момент на им:
- •1.2.3. Угловая скорость вращения вала им определяется по формуле:
- •1.2.4. Общий кпд находится как произведение кпд отдельных звеньев кинематической цепи:
- •1.2.5. Расчетная мощность электродвигателя:
- •1.2.6. Определим частоту вращения вала им:
- •1.2.7. Определим возможный диапазон общего передаточного числа кинематической схемы привода:
- •1.3. Определение передаточного числа привода и его разбивка по ступеням передач.
- •1.3.1. Определение общего передаточного числа привода для двух вариантов электродвигателей:
- •1.3.2. Делаем разбивку передаточного числа редуктора по ступеням передач:
- •1.3.3. По полученным погрешностям принимаем:
- •1.3.5. Вычерчиваем эскиз выбранного электродвигателя с указанием его основных характеристик:
- •1.4. Составление таблицы исходных данных.
- •1.4.1. Составляем таблицу исходных данных:
- •2. Проектировочный расчет передачи.
- •2.2. Допускаемые контактные напряжения.
- •2.3. Допускаемые напряжения изгиба.
- •2.4. Выбор коэффициентов.
- •2.5. Расчет геометрии передачи.
- •2.5.1. Внешний окружной модуль:
- •2.6.2. Расчет зубьев на выносливость при изгибе:
- •2.7. Расчет усилия зубчатого зацепления.
- •3. Расчет тихоходной ступени редуктора.
- •3.1. Предварительные расчеты.
- •3.1.1. Выбор материала для зубчатых колес второй ступени редуктора:
- •3.1.2. Выбор допускаемых контактных напряжений для зубчатых колес:
- •3.1.3. Выбор допускаемых напряжений изгиба зубьев:
- •3.1.4. Выбор допускаемых напряжений изгиба зубьев для расчета на изгиб максимальной нагрузкой:
- •3.1.5. Выбор параметра :
- •3.1.6. Выбор наклона зуба:
- •3.2. Проектировочный расчет.
- •3.2.1. Определяем начальный диаметр шестерни по формуле:
- •3.2.2. Определяем ширину зубчатого венца:
- •3.2.3. Ориентировочное значение модуля:
- •3.4.2. Проверочный расчет на контактную прочность при действии максимальной нагрузки:
- •3.4.3. Расчет зубьев на выносливость при изгибе, выполняется раздельно для колеса и шестерни:
- •3.4.4. Расчет на прочность при изгибе максимальной нагрузкой, выполняется раздельно для колеса и шестерни:
- •3.4.5. Расчет усилий зубчатого зацепления:
- •4. Расчет валов, подшипников и шпонок редуктора.
- •4.1.1. Выбор муфт.
- •4.1.2. Расчет шпонки входного вала на смятие.
- •4.1.3. Расчет шпонки промежуточного вала на смятие.
- •4.1.4. Расчет шпонки выходного вала на смятие.
- •4.2.1. Расчет входного вала на статическую прочность.
- •4 .2.2 Расчёт подшипников входного вала на долговечность.
- •4.3.1. Расчет вала промежуточной ступени редуктора на статическую прочность.
- •4.3.2 Расчёт подшипников промежуточного вала на долговечность.
- •4.4.1. Расчет выходного вала редуктора на статическую прочность.
- •4.4.2. Расчёт подшипников выходного вала на долговечность.
- •4.4.3. Расчет выходного вала на сопротивление усталости.
- •5. Рама
- •6. Расчет болтов крепления редуктора к раме
- •3.4.4. Расчет выходного вала на жесткость.
3.4.2. Проверочный расчет на контактную прочность при действии максимальной нагрузки:
(3.56)
где:
- исходная расчетная нагрузка, в качестве
которой принимается наибольший из
действующих на шестерню вращающий
момент в Нм, для которого число циклов
перемен напряжений не менее
.
В данном случае
;
-
наибольший вращающий момент на валу
шестерни, Нм. В данном случае
;
- коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении до зоны резонанса.
-
коэффициент, учитывающий динамическую
нагрузку, возникающую в зацеплении при
нагрузке
:
(3.57)
где: - делительный диаметр шестерни, мм;
- ширина зубчатого венца колеса, мм;
- наибольший вращающий момент на валу шестерни, ;
- удельная окружная динамическая сила, Н/мм.
-
допускаемое контактное напряжение при
максимальной нагрузке, не вызывающее
остаточных деформаций или хрупкого
разрушения поверхностного слоя:
(3.58)
где:
- предел текучести материала зубьев,
МПа. Для Стали 40ХН
<1680МПа
Напряжения, полеченные при расчете от действия реальной нагрузки, возникающей в процессе работы, меньше допустимых.
3.4.3. Расчет зубьев на выносливость при изгибе, выполняется раздельно для колеса и шестерни:
(3.59)
-
окружная сила на делительном цилиндре,
Н:
(3.60)
где:
- исходная расчетная нагрузка, в качестве
которой принимается наибольший из
действующих на шестерню вращающий
момент в
,
для которого число циклов перемен
напряжений более
.
В данном случае
.
- делительный диаметр шестерни, мм.
-
коэффициент, учитывающий влияние вида
зубчатой передачи:
Вид передачи |
Значение коэффициента |
прямозубая |
0,16 |
косозубая и шевронная |
0,06 |
Таблица 3.5.
Так
как передача прямозубая, то принимаем
- коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса, принемаем по таблице 3.3.
-
удельная окружная динамическая сила,
Н/мм:
(3.61)
где: - коэффициент, учитывающий влияние вида зубчатой передачи;
- коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса;
- окружная скорость, м/с;
- начальное межосевое расстояние, принятое для изготовления передачи, мм;
- передаточное отношение передачи.
Значение
коэффициента
Модуль ,мм |
Степень точности по нормам плавности по ГОСТ 1643–81 |
|||||
|
5 |
6 |
7 |
8 |
9 |
10 |
до 3,5 |
85 |
160 |
240 |
380 |
700 |
1200 |
св. 3,5 до 10 |
105 |
194 |
310 |
410 |
880 |
1500 |
св. 10 |
150 |
250 |
450 |
590 |
1050 |
1800 |
Таблица 3.6.
Так
как модуль менее 3,5 мм и выбранная степень
точности - 8 , то
-
коэффициент, учитывающий динамическую
нагрузку, возникающую в зацеплении до
зоны резонанса:
(3.62)
где: - удельная окружная динамическая сила, Н/мм;
-
окружная сила на делительном цилиндре,
Н;
- ширина зубчатого венца колеса, мм.
- коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий в начальный период работы передачи:
(3.63)
где: - делительный диаметр шестерни, мм;
при расположении шестерни на валу передачи со стороны подвода вращающего момента;
- ширина зубчатого венца колеса, мм.
- коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий:
(3.64)
где: - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий в начальный период работы передачи.
Для
прямозубой передачи:
(3.65)
(3.66)
-
коэффициент, учитывающий распределение
нагрузки между зубьями. Так как передача
прямозубая, то принимаем
.
-
коэффициент, учитывающий форму зуба
шестерни и концентрацию напряжений:
(3.67)
где:
- коэффициент смещения исходного контура
шестерни;
-
эквивалентное число зубьев шестерни.
-
коэффициент, учитывающий форму зуба
колеса и концентрацию напряжений:
(3.68)
где: - коэффициент смещения исходного контура колеса;
-
эквивалентное число зубьев колеса.
-
коэффициент, учитывающий наклон зуба:
(3.69)
где: - коэффициент осевого перекрытия;
- угол наклона зубьев, град.
-
коэффициент, учитывающий распределение
нагрузки между зубьями. Так как передача
прямозубая, то принимаем
.
Подставляем полученные значения коэффициентов в формулу (2.59) и вычисляем напряжения раздельно для шестерни и колеса:
Полученные значения напряжения меньше допускаемых.
