- •Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
- •Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.
- •1. Векторная система координат.
- •2. Эквивалентность пар. Сложение пар. Условия равновесия пар сил.
- •Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.
- •Аксиомы статики.
- •1. Декартова система координат.
- •2. Аксиомы статики.
- •Естественный способ задания движения точки. Траектория, скорость, ускорение точки.
- •Алгебраический и векторный момент силы относительно точки.
- •1. Естественный способ.
- •2. Векторный и алгебраический момент пары сил.
- •Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.
- •Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.
- •1. Полярные координаты
- •2. Т. О приведении произвольной системы сил к силе и паре сил.
- •Определение скорости точки при задании ее движения в криволинейных координатах.
- •Момент силы относительно оси.
- •1. Скорость точки в криволинейных координатах.
- •2. Момент силы относительно оси.
- •Понятие о криволинейных координатах. Координатные линии и координатные оси.
- •Основные виды связей и их реакции.
- •1. Криволинейные координаты.
- •2. Виды связей и их реакции.
- •Число степеней свободы твердого тела в общем и частных случаях его движения.
- •Лемма о параллельном переносе силы.
- •1. Число степеней свободы твердого тела
- •2. Лемма о параллельном переносе силы.
- •Поступательное движение твердого тела. Число степеней свободы, уравнения движения. Скорости и ускорения точек тела.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •1. Поступательное движение.
- •2. Связь между моментом относительно оси и относительно точки.
- •Вращение твердого тела вокруг неподвижной оси. Векторные и скалярные формулы для скоростей и ускорений точек тела.
- •Теорема о приведении произвольной системы сил к силе и паре – основная теорема статики.
- •1. Вращение вокруг неподв. Оси.
- •2. Основная теорема статики (теор. Пуансо):
- •Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.
- •Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.
- •2. Инварианты системы сил. Частные случаи приведения.
- •Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
- •Равновесие тела с учетом трения скольжения. Законы Кулона.
- •1. Соотн. Между уск. 2-х точек при плоском движении.
- •2. Сила трения скольжения. Законы Кулона для Fтр.Ск.:
- •Мгновенный центр скоростей, способы нахождения мцс.
- •Равновесие тела с учетом трения качения. Коэффициент трения качения.
- •1. Мцс. Способы нахождения.
- •2. Трение качения. Коэффициент трения качения.
- •Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.
- •Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.
- •1. Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.
- •2. Условия равновесия для произвольной простр.Системы сил, а также следствия из этих уравнений.
- •Вторая форма условия равновесия для пороизвольной плоской системы сил:
- •Определение скоростей точек плоской фигуры с помощью мцс.
- •Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.
- •1. Опред. V 2-х точек с пом. Мцс.
- •2. Теорема Вариньона.
- •Мгновенный центр ускорений. Частные случаи.
- •Лемма о параллельном переносе силы.
- •1. Мцу. Способы нахождения.
- •2. Лемма о параллельном переносе силы.
- •Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
- •Аналитическое выражение для моментов силы относительно осей координат.
- •1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
- •Свободное движение твердого тела. Скорости и ускорения его точек.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •Сложное движение точки. Основные понятия и определения. Примеры.
- •Центр системы параллельных сил. Формулы для радиуса-вектора и координат центра системы параллельных сил.
- •Сложное движение точки. Теорема о сложении скоростей. Примеры.
- •Центр тяжести тела. Методы нахождения центра тяжести.
- •1. Сложное движение точки. Основные понятия.
- •Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
- •Лемма о параллельном переносе силы.
- •1. Сложное движение точки. Основные понятия.
- •2. Лемма о параллельном переносе силы.
- •Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.
- •Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.
- •1. Сложное движение точки. Основные понятия.
- •2. Пара сил. ∑ моментов сил, составляющих пару.
- •Сложение вращений твердого тела вокруг пересекающихся осей.
- •Зависимость между главными моментами системы сил относительно двух центров приведения.
- •1. Сложение вращений твердого тела вокруг пересекающихся осей.
- •2. Зависимость между главными моментами сил относительно 2 центров приведения.
- •Определение ускорений точек плоской фигуры при известном положении мцу.
- •Система сходящихся сил. Условия равновесия.
- •1. Определение ускорения точек плоской фигуры с помощью мцу.
- •2. Система сходящихся сил. Условия равновесия.
- •Способы определения углового ускорения при плоском движении твердого тела.
- •Равновесие тела с учетом трения качения. Коэффициент трения качения.
- •1. Способы опред. Угл. Уск. При плоском движении.
- •2. Трение качения. Коэффициент трения качения.
- •Полная и локальная производные вектора. Формула Бура.
- •Центр тяжести тела. Методы определения положения центра тяжести.
- •1. Полная и локальная производная вектора. Формула Бура.
- •2. Центр тяжести тела. Методы нахождения центра тяжести.
- •Пара вращений.
- •Теорема о приведении произвольной системы сил к паре – основная теорема статики.
- •1. Пара вращений.
- •2. Т. О приведении произвольной системы сил к силе и паре сил.
- •Сложение вращений твердого тела вокруг параллельных осей.
- •Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.
- •1. Сложение вращений твердого тела относительно параллельных осей.
- •2. Инварианты системы тел. Частные случаи приведения.
- •Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.
- •Главный вектор и главный момент системы сил, формулы для их вычисления.
- •1. Теорема о проекциях двух точек на линию, соединяющую эти точки.
- •2. Главный вектор, момент.
- •Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
- •2. Связь между моментом относительно оси и относительно точки.
- •Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
- •Главный вектор и главный момент системы сил, формулы для их вычисления.
- •1. Соотн. Между уск. 2-х точек при плоском движении.
- •2. Главный вектор, момент.
Сложное движение точки. Теорема о сложении скоростей. Примеры.
Центр тяжести тела. Методы нахождения центра тяжести.
1. Сложное движение точки. Основные понятия.
Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).
Относительное движение – движение точки по отношению к подвижной системе координат.
Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.
Центр тяжести тела. Методы нахождения центра тяжести.
Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.
XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P
Вес тела P=∑Pi, Pi – сила тяжести частицы.
Методы определения координат центра тяжести тела.
Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.
Разбиение: Если известны центры тяжести отдельных частей тела, то
rC=(V1rC1+V2rC2+…+VnrCn)/V
Отрицательные массы:
rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.
Интегрирование: если тело нельзя разбить)
XC=(∫xdV)/V, YC=(∫ydV)/V,
ZC=(∫zdV)/V
Билет №20.
Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
Лемма о параллельном переносе силы.
1. Сложное движение точки. Основные понятия.
Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).
Относительное движение – движение точки по отношению к подвижной системе координат.
Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.
Опр-е ускорения точки в сложном движении
VM=VO+[ ωr]+ Vr
WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt
dr/dt=[ ωr]+ Vr
WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr
d Vr/dt=[ ω Vr]+ Wr
Wk=2[ω Vr]
WM=WL+Wr+WK – кинематическая теорема Кариолиса
Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса
Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.
Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении
Ускорение Кариолиса.
Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.
2. Лемма о параллельном переносе силы.
Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.
Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F’ и F”.
|F|=|F’|=|F”|. F~(F,F’,F”), т.к. (F’,F”) ~ 0, то
F ~ (F,F’,F”) ~ (F,F’,F”) ~ (F’,M(F,F”)).
Но M(F,F”)=BAxF=MB(F).
Получаем:
F ~ (F’,M(F,F”))
Ч. т. д.
Билет №21.
