Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Телетрафик - полный объем.DOC
Скачиваний:
9
Добавлен:
28.08.2019
Размер:
16.64 Mб
Скачать

7Система типа g/g/1.

Как следует из определения, этот класс систем предполагает, что как распределение интервалов времени между поступлением входных заявок-требований, так и распределение времени обслуживания в сервере описываются произвольными функциями плотности вероятности. Обозначим функцию плотности вероятности входного потока заявок a(t), а функцию плотности вероятности времени обслуживания b(x). Рассмотрим последовательность поступающих заявок на обслуживание - требований, пронумерованных индексами и вспомним обозначения, введенные ранее.

Cn - n-е требование, поступающее в систему,

tn- промежуток времени между поступлениями n-го и n-1 требований, плотность вероятности a(t) - не зависит от n.

xn - время обслуживания n-го требования, плотность вероятности b(x) -также не зависит от n,

wn - время ожидания n- го требования в очереди.

Напомним определение незавершенной работы для системы массового обслуживания. По определению незавершенная работа в каждый момент времени - это остаточное время, необходимое для освобождения системы от всех требований, находящихся в ней к этому моменту. Очевидно, что для системы G/G/1 значение незавершенной работы непосредственно перед поступлением n-го требования в точности равно времени wn . Таким образом, последовательность этих значений будет образовывать дискретную марковскую цепь, вероятности переходов которой могут быть определены по характеристикам входного потока и времени обслуживания. Зная эти переходные вероятности можно найти все характеристики изучаемой СМО. Рассмотрим два случая поступления требования Сn в систему - поступление в занятую систему (Рис. 6.1) и в свободную систему (Рис. 6.2).

Рис. 6.1 Случай, когда требование Cn+1 поступает в занятую систему.

Рис. 6.2 Случай, когда требование Cn+1 поступает в свободную систему.

Нетрудно видеть, что для первого случая

.

Для второго случая .

Определим случайную величину, равную разности между временем обслуживания требования с номером n и промежутком времени между поступлениями n+1 и n-го требований .

Фундаментальное свойство этой случайной величины состоит в том, что для стабильных СМО, т.е. имеющих стационарное распределение вероятностей состояний, ее математическое ожидание должно быть отрицательным. Смысл этого утверждения понятен из определения. Очевидно, что в среднем время обслуживания должно быть меньше времени между поступлениями соседних требований. Используя эту величину можно записать выражение для рекуррентного определения величин wn в компактном виде

Решая это уравнение последовательно, начиная с нулевого требования, можно получить

.

Условие стабильности М<un><0 , может быть записано в более привычной форме:

При выполнении этого условия будет существовать стационарное распределение вероятностей

Эта функция распределения может быть записана через искомую плотность вероятности для времени ожидания в очереди

.

Для ее нахождения Линдли получил интегральное уравнение, носящее его имя.

Функция c(u) определяется в свою очередь интегралом, похожим на свертку плотностей вероятности входного потока заявок и времени обслуживания

.

Решить уравнение Линдли в общем случае не удается. Если ввести преобразования Лапласа от функций плотности вероятности

то удается записать:

Определение функции комплексной переменной W(s) из последнего уравнения согласно методам теории функций комплексной переменной сводится к представлению разности в квадратных скобках в виде отношения функций комплексной переменной, имеющих специальное расположение нулей в правой и левой полуплоскости комплексной переменной s:

.

При Re(s)>0 функция в числителе должна быть аналитической и не иметь нулей в этой полуплоскости. Функция в знаменателе должна быть аналитической в левой полуплоскости и не иметь там нулей. Решение для преобразования Лапласа функции плотности вероятности времени ожидания в очереди может быть записано в виде

Константа K есть вероятность того, что требование не будет стоять в очереди. Вычисления показывают, что, несмотря на то, что приведенный подход позволяет выразить функцию плотности вероятности времени ожидания в любом конкретном случае заданных плотностей a(t) и b(x), записать в общем случае решение для характеристик качества обслуживания системы G/G/1 не удается. Так для среднего времени ожидания требования в очереди удается получить формулу только в виде, содержащем некоторые неизвестные параметры

.

Здесь известные параметры a, b - среднеквадратичные отклонения для входного потока требований и времени обслуживания , - среднее значение интервала времени между входными требованиями. Последнее слагаемое есть отношение второго момента к среднему значению случайной величины I - продолжительности свободного состояния в системе G/G/1. Это слагаемое не определяется в явном виде и формула для M<W> не позволяет непосредственно вычислить среднюю задержку в системе.

Найдем приближенное значение этой величины при больших значениях нагрузки. Используем разложение функций комплексной переменной A(s) и B(s) в ряд Маклорена:

Поскольку нас интересует значение функции плотности вероятности при большой нагрузке, можно ограничиться рассмотрением функции W(s) при малых значениях s. Нетрудно видеть, что последнее выражение как функция комплексной переменной имеет два нуля. Первый из них очевиден: s1=0. Для нахождения второго корня будем пренебрегать квадратом разности между средним временем обслуживания и среднем интервалом между поступлениями. Приближенное значение корня будет равно

.

Таким образом, в качестве приближения в окрестности нуля можно считать

Как видно приближение при большой нагрузке позволяет считать распределение времени ожидания в очереди экспоненциальным, а среднее время рассчитывать по полученной выше формуле.

Кроме полученной здесь формулы для больших значений , во многих случаях более точные результаты могут быть найдены с использованием верхней и нижней границы для времени ожидания, без предположения о величине нагрузки. Строгое значение для верхней границы можно найти, используя полученную выше формулу для M<W>. Путем простых преобразований нетрудно показать, что для любых значений нагрузки будет выполняться неравенство

.

Можно видеть, что верхняя граничная оценка оказывается тем более точной, чем больше величина нагрузки. Другими исследователями (Marchall) была получена другая формула для верхней границы. При ее выводе автор исходил из требования превращения оценки в точное выражение для задержки в системе M/G/1 при подстановке в формулу соотношений, справедливых для пуассоновского входного потока.

Последний параметр носит название коэффициента изменчивости времени обслуживания.

Нахождение нижней границы проще всего выполняется в предположении, что входной поток может быть отнесен к классу случайных потоков событий с монотонным возрастанием интенсивности. Для таких классов случайных потоков функция распределения удовлетворяет соотношению

В этом случае нижняя граница для среднего времени ожидания требования в очереди может быть определена следующей формулой

.

В более общем случае нахождение нижней границы дается через решение нелинейного уравнения:

Графически решение нелинейного уравнения y = g(y) дается точкой пересечения (см. Рис. 6.3) прямой Y = y и Y=g(y). Это решение и определяет собой величину точной нижней границы для среднего значения времени ожидания требования в очереди WLow

.

Рис. 6.3 Определение нижней границы WM.

Итак, анализ СМО G/G/1, в которой учитывается вид функции плотности вероятности как входного потока заявок так и времени обслуживания, позволяет в ряде случаев получить некоторые оценки, которые могут быть использованы как более точные по сравнению с максимально высокими, получаемыми при использовании марковских моделей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]