- •Введение. ОбщиЕ принципЫ построения современных эвм
- •Обеспечение максимального удобства в работе пользователей и эффективной эксплуатации оборудования.
- •Возможность мультипрограммной работы
- •Иерархическая организация
- •Возможность адаптации, развития, модернизации и наращивания технических средств.
- •Глава 1. Общие сведения Тема 1. Технико-эксплуатационные характеристики эвм
- •Тема 2. История развития эвм
- •Тема 3. Классификация эвм Тема 3. 1.Классификация эвм по назначению
- •Тема 3.2. Классификация эвм по функциональным возможностям и размерам
- •Тема 4. Функциональная и структурная организация эвм Тема 4.1. Связь между функциональной и структурной организацией эвм
- •Тема 4.2. Обобщенная структура эвм и пути её развития
- •1.Обрабатывающая подсистема
- •2.Подсистема памяти
- •3.Подсистема ввода-вывода
- •4.Подсистема управления и обслуживания
- •Глава 2. Архитектуры эвм
- •Тема 1. Sisd-компьютеры
- •Тема 1.1. Компьютеры с cisc архитектурой
- •Тема 1.2. Компьютеры с risc архитектурой
- •Тема 1.3. Компьютеры с суперскалярной обработкой
- •Тема 2. Simd-компьютеры
- •Тема 2.1. Матричная архитектура
- •Тема 2.2. Векторно-конвейерная архитектура
- •Тема 2.3. Ммх технология
- •Тема 3. Misd компьютеры
- •Тема 4. Mimd компьютеры
- •Тема 4.1. Многопроцессорные вычислительные системы
- •Многопроцессорные вычислительные системы с общей шиной.
- •Многопроцессорные вычислительные системы с многовходовыми модулями оп.
- •Тема 4.2. Многомашинные вычислительные системы (ммвс)
- •Многомашинные комплексы
- •Тема 4.3. Ммр архитектура
- •Глава 3. Процессоры. Центральный процессор
- •Тема 1. Логическая структура цп
- •Тема 2. Структурная схема процессора
- •Тема 3. Характеристики процессора
- •Тема 4. Назначение и Классификация цуу
- •Глава 4. Память эвм
- •Тема 1. Оперативная память
- •Тема 2. Организация виртуальной памяти.
- •Тема 3. Методы организации кэш-памяти
- •Тема 4. Типовая структура кэш-памяти
- •Тема 5. Системы внешней памяти
- •Глава 5. Общие принципы организации системы прерывания программ
- •Тема 1. Характеристики системы прерываний
- •Тема 2. Организация перехода к прерывающей программе
- •Глава 6. ПодСистема ввода/вывода Тема 1. Принципы организации подсистемы ввода/вывода
- •Тема 2. Каналы ввода-вывода
- •Тема 3. Интерфейсы ввода-вывода
- •Тема 4. Классификация интерфейсов
- •Тема 5. Типы и характеристики стандартных шин
- •Глава 7. Вычислительные системы
- •Тема 1. Общие положения
- •Тема 2. Классификация вс
- •Тема 3. Понятие открытой системы
- •Тема 4. Кластерные структуры
- •Содержание
Тема 3. Интерфейсы ввода-вывода
Интерфейс – это совокупность линий и шин сигналов, электрических схем, а также алгоритмов (протоколов), осуществляющих обмен информацией между устройствами ЭВМ. Он унифицирует состав и назначение линий связи, определяет последовательность сигналов при выполнении операций, временные соотношения и переходные процессы в линиях.
Линии, сгруппированные по функциональному признаку или назначению, называют шинами интерфейса. Совокупность всех линий образует магистраль интерфейса.
Надежность и производительность ЭВМ во многом зависят от характеристик интерфейсов.
Тема 4. Классификация интерфейсов
Объединение отдельных подсистем (устройств, модулей) ЭВМ в единую систему основывается на многоуровневом принципе с унифицированным сопряжением между всеми уровнями — стандартным интерфейсом. Под стандартными интерфейсами понимают такие интерфейсы, которые приняты и рекомендованы в качестве обязательных отраслевыми или государственными стандартами, различными международными комиссиями, а также крупными зарубежными фирмами.
Интерфейсы характеризуются следующими параметрами:
пропускной способностью интерфейса — количеством информации, которая может быть передана через интерфейс в единицу времени;
максимальной частотой передачи информационных сигналов через интерфейс;
информационной шириной интерфейса — числом бит или байт данных, передаваемых параллельно через интерфейс;
максимально допустимым расстоянием между соединяемыми устройствами;
динамическими параметрами интерфейса — временем передачи отдельного слова или блока данных с учетом продолжительности процедур подготовки и завершения передачи;
общим числом проводов (линий) в интерфейсе.
В настоящее время не существует однозначной классификации интерфейсов. Можно выделить следующие четыре классификационных признака интерфейсов:
способ соединения компонентов системы (радиальный, магистральный, смешанный);
способ передачи информации (параллельный, последовательный, параллельно-последовательный);
принцип обмена информацией (асинхронный, синхронный);
режим передачи информации (двусторонняя поочередная передача, односторонняя передача).
На рис. 6.2 представлены радиальный и магистральный интерфейсы, соединяющие центральный модуль (ЦМ) и другие модули (компоненты) системы (М1, ..., Мп).
Рис. 6.2. Радиальный (а) и магистральный (б) интерфейсы.
ЛЕКЦИЯ 18.
Радиальный интерфейс позволяет всем модулям (М1, . . . , Mn) работать независимо, но имеет максимальное количество шин. Магистральный интерфейс (общая шина) использует принцип разделения времени для связи между ЦМ и другими модулями. Он сравнительно прост в реализации, но лимитирует скорость обмена. Параллельные интерфейсы позволяют передавать одновременно определенное количество бит или байт информации по многопроводной линии. Последовательные интерфейсы служат для последовательной передачи по двухпроводной линии.
В случае синхронного интерфейса моменты выдачи информации передающим устройством и приема ее в другом устройстве должны синхронизироваться, для этого используют специальную линию синхронизации. При асинхронном интерфейсе передача осуществляется по принципу "запрос-ответ". Каждый цикл передачи сопровождается последовательностью управляющих сигналов, которые вырабатываются передающим и приемным устройствами. Передающее устройство может осуществлять передачу данных (байта или нескольких байтов) только после подтверждения приемником своей готовности к приему данных.
Классификация интерфейсов по назначению отражает взаимосвязь с архитектурой реальных средств вычислительной техники. В соответствии с этим признаком в ЭВМ и вычислительных системах можно выделить несколько уровней сопряжений:
машинные системные интерфейсы;
локальные шины;
интерфейсы периферийных устройств (малые интерфейсы);
межмашинные интерфейсы.
Машинные (внутримашинные) системные интерфейсы предназначены для организации связей между составными компонентами ЭВМ на уровне обмена информацией с центральным процессором, ОП и контроллерами (адаптерами) ПУ
Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора, и предназначенная для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VLB и PCI,
Назначение интерфейсов периферийных устройств (малых интерфейсов) состоит в выполнении функций сопряжения контроллера (адаптера) с конкретным механизмом ПУ.
Межмашинные интерфейсы используются в вычислительных системах и сетях.
С целью снижения стоимости некоторые компьютеры имеют единственную шину (общая шина) для памяти и устройств ввода-вывода. Персональные компьютеры первых поколений, как правило, строились на основе одной системной шины в стандартах ISA, EISA или MCA. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к многоуровневой организации шин на основе использования нескольких системных и локальных шин. В современных компьютерах шины интерфейсов делят на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода-вывода. Шины процессор-память сравнительно короткие, обычно высокоскоростные и соответствуют организации подсистемы памяти для обеспечения максимальной пропускной способности канала память-процессор. Шины ввода-вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Обычно количество и типы устройств ввода-вывода в вычислительных системах не фиксируются, что дает возможность пользователю самому подобрать необходимую конфигурацию. Шина ввода-вывода компьютера рассматривается как шина расширения, обеспечивающая постепенное наращивание устройств ввода-вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода-вывода работать независимо.
