
- •230400 «Информационные системы и технологии»
- •6 Декабря 2011 г., протокол № 4
- •Оглавление
- •Глава 1. Теория информационных процессов и систем 10
- •Глава 2. Информационные технологии 95
- •Глава 3. Архитектура информационных систем 126
- •Глава 4. Технологии программирования 150
- •Глава 5. Управление данными 239
- •Глава 6. Технологии обработки информации 315
- •Предисловие
- •Глава 1. Теория информационных процессов и систем
- •1.1. Информационные системы. Основные понятия и определения.
- •1.2. Системообразующие свойства информационных систем
- •1.3. Свойства и закономерности систем
- •1.4.Системный подход и системный анализ
- •1.5. Моделирование информационных систем
- •1.5.1. Основные понятия
- •1.5.2. Классификация методов моделирования
- •1.5.3. Математическое моделирование
- •1.6. Теория принятия решений
- •3. Неопределённость наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределённость природы).
- •4. Неопределённость действий активного или пассивного партнёра или противника.
- •1.7. Информационные процессы
- •Контрольные вопросы
- •Глава 2. Информационные технологии
- •2.1. Состав, структура, принципы реализации и функционирования информационных технологий
- •2.2. Базовые и прикладные информационные технологии
- •Прикладные программные средства включают:
- •2.3. Инструментальные средства информационных технологий
- •Контрольные вопросы
- •Глава 3. Архитектура информационных систем
- •3.1. Классификация информационных систем
- •3.2. Структура, конфигурация информационной системы
- •3.2.1. Информационное обеспечение
- •Классификаторы создаются для решения следующих основных задач:
- •3.2.2. Математическое и программное обеспечение
- •К средствам математического обеспечения относятся:
- •К средствам программного обеспечения (по) относятся:
- •3.2.3. Организационное обеспечение
- •3.2.4. Правовое обеспечение
- •3.2.5. Техническое обеспечение
- •3.3. Процесс разработки информационных систем
- •3.3.1. Выработка или выбор парадигмы программирования
- •3.3.2. Моделирование бизнес-процессов
- •3.3.3. Анализ требований, предъявляемых к ис
- •3.3.4. Разработка архитектуры
- •3.3.5. Кодирование
- •3.3.6. Тестирование информационной системы
- •3.3.7. Документирование
- •3.3.8. Внедрение информационной системы
- •3.3.9. Сопровождение информационной системы
- •Контрольные вопросы.
- •Глава 4. Технологии программирования
- •4.1. Основные понятия программного обеспечения
- •Категории специалистов, занятых разработкой и эксплуатацией программ
- •4.2. Характеристики программного продукта
- •4.3. Жизненный цикл программного продукта
- •4.4.Защита программных продуктов
- •4.5. Классы программных продуктов
- •4.6. Инструментарий технологии программирования
- •4.7. Классификация методов проектирования программных продуктов
- •4.8. Этапы создания программных продуктов
- •1. Составление технического задания на программирование
- •2. Разработка технического проекта
- •3. Создание рабочей документации (рабочий проект)
- •4. Ввод в действие
- •4.9. Структура программных продуктов
- •4.10. Структурное проектирование и программирование
- •4.11. Модульная структура программных продуктов
- •4.12. Алгоритмы
- •4.13. Классификации языков программирования и примеры языков
- •4.13.2. Основы функционального программирования с использованием языка lisp Основные свойства функциональных языков программирования
- •Распространенные языки функционального программирования
- •Основные структуры данных и базовые функции по работе с ними в среде Лисп
- •Контрольные вопросы
- •Глава 5. Управление данными
- •5.1. Основы управления данными
- •5.1.1. Информация, данные и знания.
- •5.1.2.Функции управления
- •5.2.Банки данных в информационных системах.
- •5.2.1.Концепция баз данных
- •5.2.2.Файловые системы и базы данных
- •5.2.4.Классификация банков данных
- •5.3.Моделирование и модели данных
- •5.3.1.Уровни моделирования
- •5.3.2.Виды моделей
- •5.3.3.Модели данных
- •5.3.4.Иерархическая модель данных
- •5.3.5.Сетевая модель данных
- •5.3.6.Реляционная модель данных
- •5.3.7.Постреляционная модель представления данных
- •5.3.8.Многомерные модели представления данных
- •5.3.9.Объектно-ориентированные модели представления данных
- •5.4.Проектирование базы данных
- •5.4.1.Основы реляционной алгебры
- •5.4.2.Инфологический подход к проектированию баз данных
- •5.4.3.Модель «сущность—связь»
- •5.4.4.Переход к реляционной модели данных
- •5.4.5.Пример проектирования реляционной бд средствами субд Access
- •5.5.Субд в архитектуре «клиент-сервер»
- •5.5.1.Открытые системы
- •5.5.2.Клиенты и серверы локальных сетей
- •5.5.3.Системная архитектура «клиент-сервер»
- •5.5.4.Серверы баз данных
- •5.6.Реляционный язык sql
- •Структура sql
- •Контрольные вопросы
- •Глава 6. Технологии обработки информации
- •6.1. Основные виды и процедуры обработки информации
- •6.1.1. Виды обработки информации
- •6.1.2. Основные процедуры обработки данных
- •6.2. Системы поддержки принятия решений (сппр)
- •6.2.1. Условия принятия решений
- •6.2.2. Решение задач с помощью искусственного интеллекта
- •6.2.3. Процесс выработки решения на основе первичных данных
- •6.2.4. Типы информационных систем поддержки принятия решений
- •6.2.5. Реализация процесса принятия решений
- •6.2.6. Средства разработки информационных приложений
- •6.3. Концепция хранилищ и витрин данных, достоинства и недостатки
- •6.3.1. История создания концепции хранилищ данных
- •6.3.2. Причины создания концепции хранилищ данных
- •6.3.3. Факторы и технологии складирования данных
- •6.3.4. Концепция хранилищ данных
- •6.3.5. Взаимное соотношение концепции хранилищ данных и концепций анализа данных
- •6.3.6. Реализации хранилищ данных
- •6.3.7. Субд для аналитических систем
- •6.3.8. Витрины данных
- •6.4. Искусственный интеллект и интеллектуальные системы
- •6.4.1. Цели и задачи искусственного интеллекта
- •6.4.2. Направление исследований в области искусственного интеллекта
- •6.4.3. Структура интеллектуальной системы
- •6.4.4. Разновидности интеллектуальных систем
- •Контрольные вопросы
- •Глава 7. Интеллектуальные системы и технологии
- •7.1. Теория и технологии искусственного интеллекта
- •7.2. Математическое описание экспертной системы, логический вывод
- •7.3. Искусственные нейронные сети
- •7.4. Расчётно-логические системы, системы с генетическими алгоритмами
- •(Начало цикла)
- •Создание начальной популяции
- •Размножение (Скрещивание)
- •Мутации
- •Применение генетических алгоритмов
- •7.5. Мультиагентные системы
- •Контрольные вопросы
- •Глава 8. Инструментальные средства информационных систем
- •8.1. Состав и структура инструментальных средств информационных систем
- •8.2. Тенденции развития инструментальных средств информационных систем
- •8.3. Операционные системы инструментальных средств информационных систем
- •8.4. Технические средства инструментальных средств информационных систем
- •Классификация технических средств инструментальных средств информационных систем.
- •Контрольные вопросы
- •Глава 9. Инфокоммуникационные системы и сети
- •9.1. Модели и структура информационных сетей Классическая модель построения инфокоммуникационных систем
- •9.2. Информационные ресурсы сетей
- •По способу представления:
- •По национально-территориальному признаку:
- •9.3. Теоретические основы современных информационных сетей
- •Контрольные вопросы
- •Глава 10. Методы и средства проектирования информационных систем и технологий
- •10.1. Технология проектирования информационных систем. Этапы проектирования
- •10.2. Методы проектирования информационных систем
- •10.3. Средства проектирования ис
- •Контрольные вопросы
- •Список литературы
- •143 Хорошилов а.В. Селетков с.Н. Днепровская н.В. Управление информационными ресурсами.
7.5. Мультиагентные системы
Мультиагентная система (МАС, англ. Multi-agent system) – это система, образованная несколькими взаимодействующими интеллектуальными агентами (термины «агент» и «интеллектуальный агент» (ИА) имеют два значения, и из-за этого иногда возникает путаница, в компьютерной науке интеллектуальный агент – программа, самостоятельно выполняющая задание, указанное пользователем компьютера). Мультиагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или монолитной системы.81 Примерами таких задач являются онлайн-торговля, ликвидация чрезвычайных ситуаций и моделирование социальных структур.
В мультиагентной системе агенты имеют несколько важных характеристик:
автономность: агенты, хотя бы частично, независимы;
ограниченность представления: ни у одного из агентов нет представления обо всей системе, или система слишком сложна, чтобы знание о ней имело практическое применение для агента;
децентрализация: нет агентов, управляющих всей системой.
Обычно в мультиагентных системах исследуются программные агенты. Тем не менее, составляющими мультиагентной системы могут также быть роботы, люди или команды людей. Также, мультиагентные системы могут содержать и смешанные команды.
В мультиагентных системах могут проявляться самоорганизация и сложное поведение даже если стратегия поведения каждого агента достаточно проста. Это лежит в основе так называемого роевого интеллекта.
Агенты могут обмениваться полученными знаниями, используя некоторый специальный язык и подчиняясь установленным правилам «общения» (протоколам) в системе. Примерами таких языков являются Knowledge Query Manipulation Language (KQML) и FIPA’s Agent Communication Language (ACL).82
Изучение мультиагентных систем
Изучение мультиагентных систем связано с решением достаточно сложных проблем искусственного интеллекта.
Темы для исследования в рамках МАС83:
знания, желания и намерения (BDI)84;
кооперация и координация;
организация;
коммуникация;
согласование;
распределённое решение;
распределённое решение задач;
мультиагентное обучение;
надёжность и устойчивость к сбоям.
Парадигмы мультиагентных систем 85
Многие МАС имеют компьютерные реализации, основанные на пошаговом имитационном моделировании. Компоненты МАС обычно взаимодействуют через весовую матрицу запросов.
Модель «Запрос – Ответ – Соглашение» – обычное явление для МАС. Схема реализуется за несколько шагов:
сначала всем задаётся вопрос наподобие: «Кто может мне помочь?»;
на что только «способные» отвечают «Я смогу, за такую-то цену»;
в конечном итоге, устанавливается «соглашение».
Для последнего шага обычно требуется ещё несколько (более мелких) актов обмена информацией. При этом принимаются во внимание другие компоненты, в том числе уже достигнутые «соглашения» и ограничения среды.
Другой часто используемой парадигмой в МАС является «феромон», где компоненты «оставляют» информацию для следующих в очереди или ближайших компонентов. Такие «феромоны» могут испаряться со временем, т. е., их значения могут изменяться со временем.
Свойства
МАС также относятся к самоорганизующимся системам86, так как в них ищется оптимальное решение задачи без внешнего вмешательства. Под оптимальным решением понимается решение, на которое потрачено наименьшее количество энергии в условиях ограниченных ресурсов.
Главное достоинство МАС – это гибкость. Мультиагентная система может быть дополнена и модифицирована без переписывания значительной части программы. Также эти системы обладают способностью к самовосстановлению и обладают устойчивостью к сбоям, благодаря достаточному запасу компонентов и самоорганизации.
Применение МАС
Мультиагентные системы применяются в нашей жизни в графических приложениях, например, в компьютерных играх. Агентные системы также были использованы в фильмах. Теория МАС используется в составных системах обороны. Также МАС применяются в транспорте, логистике, графике, геоинформационных системах и многих других.
Мультиагентные системы хорошо зарекомендовали себя в сфере сетевых и мобильных технологий, для обеспечения автоматического и динамического баланса нагруженности, расширяемости и способности к самовосстановлению.87