- •230400 «Информационные системы и технологии»
- •6 Декабря 2011 г., протокол № 4
- •Оглавление
- •Глава 1. Теория информационных процессов и систем 10
- •Глава 2. Информационные технологии 95
- •Глава 3. Архитектура информационных систем 126
- •Глава 4. Технологии программирования 150
- •Глава 5. Управление данными 239
- •Глава 6. Технологии обработки информации 315
- •Предисловие
- •Глава 1. Теория информационных процессов и систем
- •1.1. Информационные системы. Основные понятия и определения.
- •1.2. Системообразующие свойства информационных систем
- •1.3. Свойства и закономерности систем
- •1.4.Системный подход и системный анализ
- •1.5. Моделирование информационных систем
- •1.5.1. Основные понятия
- •1.5.2. Классификация методов моделирования
- •1.5.3. Математическое моделирование
- •1.6. Теория принятия решений
- •3. Неопределённость наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределённость природы).
- •4. Неопределённость действий активного или пассивного партнёра или противника.
- •1.7. Информационные процессы
- •Контрольные вопросы
- •Глава 2. Информационные технологии
- •2.1. Состав, структура, принципы реализации и функционирования информационных технологий
- •2.2. Базовые и прикладные информационные технологии
- •Прикладные программные средства включают:
- •2.3. Инструментальные средства информационных технологий
- •Контрольные вопросы
- •Глава 3. Архитектура информационных систем
- •3.1. Классификация информационных систем
- •3.2. Структура, конфигурация информационной системы
- •3.2.1. Информационное обеспечение
- •Классификаторы создаются для решения следующих основных задач:
- •3.2.2. Математическое и программное обеспечение
- •К средствам математического обеспечения относятся:
- •К средствам программного обеспечения (по) относятся:
- •3.2.3. Организационное обеспечение
- •3.2.4. Правовое обеспечение
- •3.2.5. Техническое обеспечение
- •3.3. Процесс разработки информационных систем
- •3.3.1. Выработка или выбор парадигмы программирования
- •3.3.2. Моделирование бизнес-процессов
- •3.3.3. Анализ требований, предъявляемых к ис
- •3.3.4. Разработка архитектуры
- •3.3.5. Кодирование
- •3.3.6. Тестирование информационной системы
- •3.3.7. Документирование
- •3.3.8. Внедрение информационной системы
- •3.3.9. Сопровождение информационной системы
- •Контрольные вопросы.
- •Глава 4. Технологии программирования
- •4.1. Основные понятия программного обеспечения
- •Категории специалистов, занятых разработкой и эксплуатацией программ
- •4.2. Характеристики программного продукта
- •4.3. Жизненный цикл программного продукта
- •4.4.Защита программных продуктов
- •4.5. Классы программных продуктов
- •4.6. Инструментарий технологии программирования
- •4.7. Классификация методов проектирования программных продуктов
- •4.8. Этапы создания программных продуктов
- •1. Составление технического задания на программирование
- •2. Разработка технического проекта
- •3. Создание рабочей документации (рабочий проект)
- •4. Ввод в действие
- •4.9. Структура программных продуктов
- •4.10. Структурное проектирование и программирование
- •4.11. Модульная структура программных продуктов
- •4.12. Алгоритмы
- •4.13. Классификации языков программирования и примеры языков
- •4.13.2. Основы функционального программирования с использованием языка lisp Основные свойства функциональных языков программирования
- •Распространенные языки функционального программирования
- •Основные структуры данных и базовые функции по работе с ними в среде Лисп
- •Контрольные вопросы
- •Глава 5. Управление данными
- •5.1. Основы управления данными
- •5.1.1. Информация, данные и знания.
- •5.1.2.Функции управления
- •5.2.Банки данных в информационных системах.
- •5.2.1.Концепция баз данных
- •5.2.2.Файловые системы и базы данных
- •5.2.4.Классификация банков данных
- •5.3.Моделирование и модели данных
- •5.3.1.Уровни моделирования
- •5.3.2.Виды моделей
- •5.3.3.Модели данных
- •5.3.4.Иерархическая модель данных
- •5.3.5.Сетевая модель данных
- •5.3.6.Реляционная модель данных
- •5.3.7.Постреляционная модель представления данных
- •5.3.8.Многомерные модели представления данных
- •5.3.9.Объектно-ориентированные модели представления данных
- •5.4.Проектирование базы данных
- •5.4.1.Основы реляционной алгебры
- •5.4.2.Инфологический подход к проектированию баз данных
- •5.4.3.Модель «сущность—связь»
- •5.4.4.Переход к реляционной модели данных
- •5.4.5.Пример проектирования реляционной бд средствами субд Access
- •5.5.Субд в архитектуре «клиент-сервер»
- •5.5.1.Открытые системы
- •5.5.2.Клиенты и серверы локальных сетей
- •5.5.3.Системная архитектура «клиент-сервер»
- •5.5.4.Серверы баз данных
- •5.6.Реляционный язык sql
- •Структура sql
- •Контрольные вопросы
- •Глава 6. Технологии обработки информации
- •6.1. Основные виды и процедуры обработки информации
- •6.1.1. Виды обработки информации
- •6.1.2. Основные процедуры обработки данных
- •6.2. Системы поддержки принятия решений (сппр)
- •6.2.1. Условия принятия решений
- •6.2.2. Решение задач с помощью искусственного интеллекта
- •6.2.3. Процесс выработки решения на основе первичных данных
- •6.2.4. Типы информационных систем поддержки принятия решений
- •6.2.5. Реализация процесса принятия решений
- •6.2.6. Средства разработки информационных приложений
- •6.3. Концепция хранилищ и витрин данных, достоинства и недостатки
- •6.3.1. История создания концепции хранилищ данных
- •6.3.2. Причины создания концепции хранилищ данных
- •6.3.3. Факторы и технологии складирования данных
- •6.3.4. Концепция хранилищ данных
- •6.3.5. Взаимное соотношение концепции хранилищ данных и концепций анализа данных
- •6.3.6. Реализации хранилищ данных
- •6.3.7. Субд для аналитических систем
- •6.3.8. Витрины данных
- •6.4. Искусственный интеллект и интеллектуальные системы
- •6.4.1. Цели и задачи искусственного интеллекта
- •6.4.2. Направление исследований в области искусственного интеллекта
- •6.4.3. Структура интеллектуальной системы
- •6.4.4. Разновидности интеллектуальных систем
- •Контрольные вопросы
- •Глава 7. Интеллектуальные системы и технологии
- •7.1. Теория и технологии искусственного интеллекта
- •7.2. Математическое описание экспертной системы, логический вывод
- •7.3. Искусственные нейронные сети
- •7.4. Расчётно-логические системы, системы с генетическими алгоритмами
- •(Начало цикла)
- •Создание начальной популяции
- •Размножение (Скрещивание)
- •Мутации
- •Применение генетических алгоритмов
- •7.5. Мультиагентные системы
- •Контрольные вопросы
- •Глава 8. Инструментальные средства информационных систем
- •8.1. Состав и структура инструментальных средств информационных систем
- •8.2. Тенденции развития инструментальных средств информационных систем
- •8.3. Операционные системы инструментальных средств информационных систем
- •8.4. Технические средства инструментальных средств информационных систем
- •Классификация технических средств инструментальных средств информационных систем.
- •Контрольные вопросы
- •Глава 9. Инфокоммуникационные системы и сети
- •9.1. Модели и структура информационных сетей Классическая модель построения инфокоммуникационных систем
- •9.2. Информационные ресурсы сетей
- •По способу представления:
- •По национально-территориальному признаку:
- •9.3. Теоретические основы современных информационных сетей
- •Контрольные вопросы
- •Глава 10. Методы и средства проектирования информационных систем и технологий
- •10.1. Технология проектирования информационных систем. Этапы проектирования
- •10.2. Методы проектирования информационных систем
- •10.3. Средства проектирования ис
- •Контрольные вопросы
- •Список литературы
- •143 Хорошилов а.В. Селетков с.Н. Днепровская н.В. Управление информационными ресурсами.
5.2.4.Классификация банков данных
Классифицировать банки данных можно по-разному. В основу классификации могут быть положены число пользователей или распределённость в пространстве, требования к квалификации пользователей или характер и особенности обрабатываемых данных.
Термин персональные банки данных употребляют, чтобы подчеркнуть, что БнД используется одним пользователем, который одновременно выполняет и функции администратора базы данных.
В распределённых базах данных различные части базы могут быть удалены друг от друга (находиться в разных регионах страны или в разных странах). Распределённая обработка предполагает территориальную удалённость пользователей, взаимодействующих с БнД, причем распределённая обработка возможна как для распределённой базы данных, так и для централизованной.
Термин корпоративная база (банк) данных употребляют, подчеркивая узковедомственный характер использования данных. В корпоративных базах данных, как правило, большое внимание уделяется обеспечению конфиденциальности хранимых и обрабатываемых данных. С этой целью используются как специальные механизмы защиты данных от несанкционированного доступа к секретным данным, так и механизмы защиты данных от их умышленных изменений или искажений.
Термин открытые банки данных используют, когда хотят показать, что содержимое БнД и его возможности доступны любому пользователю, даже посредством Интернета (почему только Интернета).
Существуют также специализированные банки данных. Например, иногда говорят о научных базах и банках, в которых централизуются данные о физических, биологических, медицинских и других экспериментах, а также выводы и предположения о закономерностях и взаимосвязях результатов экспериментов. Особенностью научных БнД является принципиальная неоднозначность результатов, которая может быть связана с ограниченностью человеческих знаний, точностью проведения экспериментов, принципиальной невозможностью измерения каких-либо параметров [62].
5.3.Моделирование и модели данных
5.3.1.Уровни моделирования
При разработке базы данных обычно выделяется несколько уровней моделирования, при помощи которых происходит переход от предметной области к конкретной реализации базы данных средствами конкретной СУБД. Можно выделить следующие уровни:
Сама предметная область
Модель предметной области
Логическая модель данных
Физическая модель данных
Собственно база данных и приложения
Предметная область – это часть реального мира, данные о которой мы хотим отразить в базе данных. Например, в качестве предметной области можно выбрать бухгалтерию какого-либо предприятия, отдел кадров, банк, магазин и т. д.
Модель предметной области. Модель предметной области – это наши знания о предметной области. Выше говорилось о том, что понятие «знания» не определены строго. Знания могут быть представлены как в виде неформальных знаний в мозгу эксперта, так и выражены формально при помощи каких-либо средств. В качестве таких средств могут выступать текстовые описания предметной области, наборы должностных инструкций, правила ведения дел в компании и т. п. Опыт показывает, что текстовый способ представления модели предметной области крайне неэффективен. Гораздо более информативными и полезными при разработке баз данных являются описания предметной области, выполненные при помощи специализированных графических нотаций. Имеется большое количество методик описания предметной области. Модель предметной области описывает скорее процессы, происходящие в предметной области и данные, используемые этими процессами. От того, насколько правильно смоделирована предметная область, зависит успех дальнейшей разработки приложений.
В качестве примера рассмотрим предметную область ограниченную отбором на замещение вакантной должности с помощью кадрового агентства. Основной критерий отбора кандидата – образование. Если ограничить описание предметной области минимумом данных, то информация о кандидате должна включать «фамилию», «имя», «отчество», «уровень и тип образования» (Петров Иван Петрович, высшее, техническое). В этом случае, при выборе кандидата с высшим техническим образованием, может быть получен список в несколько тысяч, а может быть и нескольких десятков тысяч кандидатов, в зависимости от величины БД. Поэтому описание предметной области «образование кандидата», в действительности, должно включать значительно большую совокупность данных, чтобы обеспечить процесс отбора кандидатов по специальности и квалификации, опыту работы по специальности в аналогичной должности, по имеющемуся дополнительному образованию, по форме обучения, профилю оконченного вуза или вузов, по наличию ученой степени, звания и т. д.
Логическая модель данных. Логическая модель описывает понятия предметной области, их взаимосвязь, а также ограничения на данные, налагаемые предметной областью. Примеры понятий – «сотрудник», «отдел», «проект». Примеры взаимосвязей между понятиями – «сотрудник может выполнять несколько проектов», «над одним проектом может работать несколько сотрудников». Примеры ограничений – «сотрудник числится только в одном отделе».
Логическая модель данных является начальным прототипом будущей базы данных. Логическая модель строится в терминах информационных единиц, но без привязки к конкретной СУБД. Более того, логическая модель данных не обязательно должна быть выражена средствами именно реляционной модели данных (модели данных подробнее рассмотрены разделе 5.3.3). Основным средством разработки логической модели данных в настоящий момент являются различные варианты ER-диаграмм (Entity-Relationship, диаграмма «сущность-связь»). Одну и ту же ER-диаграмму можно преобразовать как в реляционную модель данных, так и в модель данных для иерархических и сетевых СУБД, или в постреляционную модель данных [146].
На уровне логического моделирования мы определяем сущности и атрибуты этих сущностей.
Физическая модель данных. Физическая модель данных описывает данные средствами конкретной СУБД. Если считать, что физическая модель данных реализована средствами реляционной СУБД (раздел 5.3.3), то отношения, разработанные на стадии формирования логической модели данных, преобразуются в таблицы, атрибуты становятся столбцами таблиц, для ключевых атрибутов создаются уникальные индексы, домены преображаются в типы данных, принятые в конкретной СУБД [166].
Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур.
Собственно база данных и приложения. Результатом предыдущих этапов является собственно сама база данных. База данных реализована на конкретной программно-аппаратной основе, и выбор этой основы позволяет существенно повысить скорость работы с базой данных. Например, можно выбирать различные типы компьютеров, менять количество процессоров, объём оперативной памяти, дисковые подсистемы и т. п. Очень большое значение имеет также настройка СУБД в пределах выбранной программно-аппаратной платформы.
Таким образом, ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования.
