Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nuclear power plant.docx
Скачиваний:
13
Добавлен:
27.08.2019
Размер:
33.67 Кб
Скачать

Plant location

In many countries, plants are often located on the coast, in order to provide a ready source of cooling water for the essential service water system. As a consequence the design needs to take the risk of flooding and tsunamis into account. The World Energy Council (WEC) argues disaster risks are changing and increasing the likelihood of disasters such as earthquakes, cyclones, hurricanes, typhoons, flooding. Climate change and increased temperatures, lower precipitation levels and an increase in the frequency and severity of droughts may lead to fresh water shortages. Seawater is corrosive and so nuclear energy supply is likely to be negatively affected by the fresh water shortage. This generic problem may become increasingly significant over time. Failure to calculate the risk of flooding correctly lead to a Level 2 event on the International Nuclear Event Scale during the 1999 Blayais Nuclear Power Plant flood, while flooding caused by the 2011 Tōhoku earthquake and tsunami lead to the Fukushima I nuclear accidents.

The design of plants located in seismically active zones also requires the risk of earthquakes and tsunamis to be taken into account. Japan, India, China and the USA are among the countries to have plants in earthquake-prone regions. Damage caused to Japan's Kashiwazaki-Kariwa Nuclear Power Plant during the2007 Chūetsu offshore earthquake underlined concerns expressed by experts in Japan prior to the Fukushima accidents, who have warned of agenpatsu-shinsai (domino-effect nuclear power plant earthquake disaster).

Multiple reactors

The Fukushima nuclear disaster revealed the dangers of building multiple nuclear reactor units close to one another. This proximity triggered the parallel, chain-reaction accidents that led to hydrogen explosions blowing the roofs off reactor buildings and water draining from open-air spent fuel pools -- a situation that was potentially more dangerous than the loss of reactor cooling itself. Because of the proximity of the reactors, Plant Director Masao Yoshida "was put in the position of trying to cope simultaneously with core meltdowns at three reactors and exposed fuel pools at three units".

Nuclear safety systems

The three primary objectives of nuclear safety systems as defined by the Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition, and prevent the release of radioactive material during events and accidents. These objectives are accomplished using a variety of equipment, which is part of different systems, of which each performs specific functions.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]