
Информационный блок (4)
Закон
Кулона позволяет рассчитать величину
силы взаимодействия
между двумя точечными зарядами
и
,
находящимися на расстоянии
:
,
где
— коэффициент пропорциональности.
Величина
Ф/м
называется электрической постоянной.
Сила взаимодействия направлена вдоль
линии, соединяющей заряды. Одноименные
заряды — отталкиваются, разноименные
— притягиваются.
В векторной форме закон Кулона выглядит следующим образом:
где
— вектор, проведенный от заряда
к заряду
,
— модуль вектора
.
Напряженность электрического поля равна отношению силы, действующей на заряд, к величине заряда:
.
Напряженность электрического поля численно равна силе, действующей на единичный положительный заряд. Напряженность является силовой характеристикой электрического поля. Вектор напряженности электрического поля направлен вдоль касательной к силовой линии в данной точке.
Напряженность электрического поля точечного заряда q вычисляется по формуле:
,
где
— вектор, проведенный от заряда
к точке наблюдения,
— модуль вектора
.
Потенциал
электрического поля в данной точке
равен отношению к величине заряда
потенциальной
энергии
взаимодействия с
электрическим полем заряда, помещенного
в данную точку:
.
Потенциал электрического поля в данной точке численно равен потенциальной энергии помещенного в данную точку единичного положительного заряда. Совокупность точек с одинаковым потенциалом называется эквипотенциальной поверхностью. Величина потенциала вдоль эквипотенциальной поверхности остается постоянной.
Потенциал электрического поля точечного заряда вычисляется по формуле:
,
где — расстояние от заряда q до точки наблюдения.
Между напряженностью электрического поля и его потенциалом существует соотношение:
,
где
— дифференциальный оператор,
— единичные векторы, направленные вдоль
осей OX,
OY
и OZ.
Разность потенциалов между точками 1 и 2 пространства равна криволинейному интегралу от скалярного произведения вектора напряженности электрического поля и элемента длины линии, вычисленного вдоль произвольной линии, проведенной от точки 1 до точки 2:
.
Циркуляция напряженности электрического поля вычисляется как криволинейный интеграл вдоль некоторого замкнутого контура L от скалярного произведения вектора напряженности электрического поля и элемента длины контура:
.
Циркуляция напряженности электростатического поля вдоль любого замкнутого контура равна нулю.
Закон сохранения электрического заряда: в замкнутой системе зарядов их алгебраическая сумма не изменяется.
Емкость
уединенного проводника определяется
отношением сообщенного проводнику
заряда
,
к вызванному этим зарядом изменению
потенциала
:
.
Емкость плоского конденсатора вычисляется по формуле:
,
где
— электрическая постоянная,
— диэлектрическая проницаемость
диэлектрика между обкладками конденсатора,
— площадь обкладок конденсатора,
— расстояние между обкладками
конденсатора.
Емкость батареи конденсаторов при параллельном соединении равна сумме емкостей отдельных конденсаторов:
,
где n — число конденсаторов в соединении.
Емкость батареи конденсаторов при последовательном соединении определяется из выражения:
.