
- •Основы аппаратного обеспечения персонального компьютера Конспект лекций
- •Введение
- •Аппаратное обеспечение персонального компьютера: основные составляющие
- •Системный блок
- •1.1. Корпус системного блока
- •Основные типы корпусов
- •1.2. Блок питания
- •Критерии визуальной оценки качества блока питания
- •1.3. Материнская плата
- •Интерфейсы и шины материнской платы
- •Подсистема памяти
- •Набор микросхем
- •Форм-фактор
- •1.4. Центральный процессор и система его охлаждения.
- •Производительность процессора и определяющие её параметры.
- •Количество операций за такт
- •Кэширование
- •Системная шина и шина памяти
- •Общие характеристики процессоров Сегментация процессоров
- •Разъём для установки
- •Охлаждение центрального процессора
- •Радиаторы
- •Вентиляторы
- •Тепловой интерфейс
- •Ведущие изготовители систем охлаждения цп
- •1.5. Оперативная память.
- •Основные типы оперативной памяти:
- •1.6. Накопители на жестких и гибких магнитных дисках
- •Дисководы (Floppy Disk Drive, fdd)
- •Жесткий диск (винчестер, Накопитель на жестких магнитных дисках)
- •Конструкция жесткого диска (рис. 4)
- •Современная классификация жестких дисков
- •Основные характеристики жестких дисков
- •Ведущие изготовители и их модельные ряды
- •1.7. Накопители на компакт-дисках
- •Записывающие накопители cd
- •Перезаписывающие накопители (cd-rw)
- •Видеокарта
- •Архитектура видеоадаптера
- •Интерфейсы и память
- •Основные характеристики видеокарт
- •Звуковая карта
- •Звуковые карты на шине pci
- •Встроенный в системную плату ас’97 кодек
- •Звуковые адаптеры и игры
- •Основные параметры и функции звуковых карт Разрядность и динамический диапазон
- •Отношение сигнал/шум
- •Частота дискретизации
- •10/100 Мбит/с Ethernet
- •1/10-Гбит/с Ethernet
- •Беспроводные сети
- •Виды tv-тюнеров
- •Комбинированные устройства
- •Внутренние устройства (платы расширения)
- •2. Мониторы.
- •Технологии и параметры
- •Размер экрана, размер точки и разрешение
- •Яркость, контрастность, угол обзора, цветопередача
- •Время отклика
- •Основные параметры мониторов
- •3. Клавиатура и мышь
- •Принцип действия клавиатуры
- •Состав клавиатуры
- •Принцип действия
- •Классификация мышей
- •Специальные манипуляторы
- •4. Периферийные устройства блока
- •4.1. Принтеры
- •Основные типы и принципы работы принтеров
- •Матричные игольчатые принтеры
- •Струйные принтеры
- •Лазерные и светодиодные принтеры
- •Основные характеристики принтеров
- •4.2. Модемы
- •К основным потребительским параметрам модемов относятся:
- •Классификация модемов
- •Внешние модемы
- •Внутренние модемы
- •Дополнительные функции модемов
- •Основные категории модемов:
- •4.3 Сканеры
- •Основные типы сканеров: Ручные
- •Глубина цвета
- •Динамический диапазон
- •Типы разрешения
- •Twain-модуль
- •Аппаратный интерфейс
- •Выбор разрешения при сканировании
- •4.4. Акустическая система
- •Назначение и конструкция
- •Современные системы могут состоять:
- •Оглавление введение 3
Тепловой интерфейс
Уже отмечалось, что передача тепла от одного тела к другому зависит от площади поверхности соприкосновения. Соответственно чем она больше, тем выше эффективность работы охладителя. К сожалению, ни основание радиатора, ни ядро процессора не имеют идеально гладкой поверхности. Небольшие шероховатости, углубления и царапины образуют воздушные подушки, а воздух имеет очень малую теплопроводность. Для улучшения теплового контакта применяют различные тепловые интерфейсы: термопасты и прокладки. Эти интерфейсы имеют высокую теплопроводность и при контакте заполняют собой неровности поверхности, исключая появление воздушной прослойки.
Ведущие изготовители систем охлаждения цп
Наиболее известными изготовителями охладителей, представленными на российском рынке, следует признать компании CoolerMaster, EverСool, GlacialTech, Molex, Thermaltake, Titan и Zalman.
1.5. Оперативная память.
Оперативная память или оперативное запоминающее устройство (ОЗУ) - от английского Random Access Memory - память произвольного доступа. Это устройство компьютера, предназначенное для хранения выполняющихся в текущий момент времени программ, а также данных, необходимых для их выполнения.
RAM реализована также на интегральных микросхемах. Существует два типа таких микросхем памяти: статическая и динамическая.
Ячейку статической памяти образуют так называемые триггерные схемы. Входным импульсом они устанавливаются в одно из двух возможных состояний – «0» или «1». Данные в памяти хранятся лишь при постоянном электропитании. Про такое запоминающее устройство говорят, что оно энергозависимо. Данные стираются после выключения или перезагрузки компьютера. Основная характеристика ОЗУ с точки зрения пользователя – объем. Память можно наращивать, прикупая микросхемы и ставя их в отведенные для них места на материнской плате компьютера.
У первых персональных компьютеров объем памяти не превышал 640 Кбайт — 1 Мбайт, а у современного типового ПК имеется 256—512 Мбайт памяти. За два десятилетия память компьютеров расширилась в 250—500 раз и продолжает расширяться.
Темпы роста объемов динамической памяти (DRAM), используемой в качестве оперативной памяти компьютеров, вполне соответствуют темпам роста производительности процессоров, то есть их способности оперативно обрабатывать все большие объемы информации. Однако для реализации этой возможности быстродействие памяти должно соответствовать быстродействию процессоров. К сожалению, быстродействие DRAM растет очень медленно. Время произвольного доступа за два десятилетия уменьшилось всего в несколько раз, в то время как частота работы процессоров возросла более чем в тысячу раз.
Существуют два пути повышения производительности оперативной памяти: увеличение ширины шины памяти или ее частоты.
Основные типы оперативной памяти:
SDRAM. Уже устаревшая, крайне редко применяемая в настоящее время. Такая память имеет маркировку PC100 или PC133 с пропускной способностью 800 Мбайт/с и 1,06 Гбайт/с соответственно.
DDR. Память DDR получила такое название потому, что позволяет при той же тактовой частоте передавать данные вдвое быстрее, чем классическая SDRAM, по два раза за такт. Такая память получила название DDR200 (по эффективной частоте передачи данных), нередко используется и обозначение PC1600 (по пропускной способности шины памяти, т. е. пропускная способность 1,6 Гбайт/с). Соответственно ячейки DRAM в памяти DDR266 работают на частоте 133 МГц и имеют обозначение РС2100, в DDR333 — 166 МГц (РС2700), а в DDR400 — 200 МГц (РС3200). Эффективная частота модулей памяти, выпускаемых в настоящее время в больших количествах, достигла 550 МГц (частота ячеек DRAM в ней составляет 275 МГц). Дальнейшее наращивание частот весьма проблематично; возможно, удастся преодолеть барьер в 300 МГц, но дальнейшее развитие практически невозможно, и никакого запаса производительности технология DDR уже не имеет. Индустрии необходим новый стандарт памяти, который позволил бы увеличивать эффективную частоту и соответственно производительность модулей памяти еще некоторое время. Таким стандартом и стала память DDR2.
DDR2. Так же, как и в DDR-памяти, микросхема выдает данные на буферы ввода-вывода по широкой внутренней 64-бит шине с частотой 100 МГц. Однако теперь они уходят из буфера по еще более быстрой и еще более высокочастотной шине из буфера к контроллеру памяти ведет 16-бит шина, работающая на удвоенной частоте — 200 МГц, что вместе с передачей данных дважды за такт обеспечивает эффективную частоту модуля памяти 400 МГц. Такой модуль памяти обозначается DDR2-400, его название образовано по аналогии с памятью DDR: в соответствии с эффективной частотой передачи данных к контроллеру памяти.
Таким образом, используя массивы ячеек DRAM с одинаковой частотой (100 МГц), в разных типах памяти достигается различная производительность модуля памяти. Для SDRAM это 800 Мбайт/с, для DDR уже вдвое больше — 1600 Мбайт/с, а память DDR2 обеспечивает 3200 Мбайт/с.