Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АЛГЕБРА 2.doc
Скачиваний:
14
Добавлен:
26.08.2019
Размер:
5.17 Mб
Скачать

§1.5. Нормальные операторы.

Линейный оператор унитарного пространства называется нормальным, если

,

т. е. если он перестановочен со своим сопряжённым.

Если ортонормированный базис пространства и матрица нормального оператора в этом базисе, то по теореме из §1.3 имеем .

Справедливы следующие три теоремы о нормальных операторах.

ТЕОРЕМА 1. Всякий собственный вектор нормального оператора , соответствующий собственному значению будет и собственным вектором оператора , который соответствует комплексно-сопряжённому значению .

ДОКАЗАТЕЛЬСТВО. Если линейный оператор, а тождественный оператор , то также линейный оператор, сопряжённым для которого будет (т. к. ). По условию нормальный оператор, значит . Нетрудно проверить, что

.

Из того, что является собственным вектором оператора следует, что , значит

То есть и . □

ТЕОРЕМА 2. Собственные векторы, соответствующие различным собственным значениям нормального оператора будут ортогональны.

ДОКАЗАТЕЛЬСТВО. Пусть .

Тогда

.

Откуда , следовательно , т. к. . □

ТЕОРЕМА 3. (основная о нормальных операторах). Для каждого нормального оператора в унитарном пространстве найдётся ортонормированный базис, составленный из собственных векторов оператора . Матрица имеет в этом базисе диагональный вид.

ДОКАЗАТЕЛЬСТВО. Пусть характеристический корень линейного оператора (по основной теореме алгебры комплексных чисел [3] такой корень существует). Ему соответствует собственный вектор . Рассмотрим множество , которое является подпространством пространства и называется ортогональным к . Так как , то для любого вектора справедливо

.

Таким образом, как только . Такое подпространство называется инвариантным, относительно оператора .

Рассмотрим оператор , заданный на следующим образом: . Оно называется ограничением на . Заметим, что собственные векторы будут собственными векторами и .

Далее аналогично находим в собственный вектор оператора . Пусть подпространство векторов, ортогональных к и . будет опять инвариантным относительно , т. к. является пересечением двух инвариантных подпространств. В нём снова найдётся собственный вектор оператора . И т. д.

Продолжая указанную процедуру, получим ортогональный базис пространства , составленный из собственных векторов оператора . Остаётся нормировать этот базис.

В этом базисе матрица линейного оператора будет иметь диагональный вид [2]. □

§1.6. Унитарные операторы.

Линейный оператор унитарного пространства называется унитарным, если он сохраняет скалярное произведение векторов, т. е.

.

Непосредственно из определения унитарного оператора следует:

,

т. е. тождественный оператор. Следовательно, унитарный оператор можно определить как оператор, для которого .

Так как , заключаем, что унитарный оператор является частным случаем нормального оператора.

Если матрица оператора в некотором ортонормированном базисе, то матрица будет сопряжено транспонированной. Условие унитарности оператора в матричной форме будет выглядеть следующим образом: или . Такая матрица тоже называется унитарной.

Если линейный оператор рассматривается в евклидовом пространстве и сохраняет скалярное произведение, то его матрица в некотором базисе будет такой, что , т. е. транспонированная матрица совпадает с обратной. Такой оператор называют ортогональным, а его матрицу ортогональной.

ТЕОРЕМА 1. Линейный оператор унитарного пространства является унитарным тогда и только тогда, когда он сохраняет длину вектора, т. е. .

ДОКАЗАТЕЛЬСТВО. Действительно,

.

В другую сторону, пусть . Тогда для любого справедливо: . Если сохраняет скалярное произведение, то . Раскрывая скобки и учитывая, что и , получим

(1)

При получаем

(2)

В случае евклидова пространства, т. к. , имеем .

Иначе, положим в (1) , получим

.

Прибавим полученное равенство к (2), тогда . □

ТЕОРЕМА 2. Линейный оператор унитарного пространства является унитарным тогда и только тогда, когда переводит любой ортонормированный базис этого пространства снова в ортонормированный.

ДОКАЗАТЕЛЬСТВО. Пусть ортонормированный базис пространства . По определению унитарного пространства , значит, . А по предыдущей теореме .

Обратно, пусть

, , тогда . Так как по предположению переводит ортонормированный базис в ортонормированный, то

.

Следовательно, унитарный оператор. □

ТЕОРЕМА 3. (основная об унитарных операторах). Матрица унитарного оператора в подходящем ортонормированном базисе является диагональной, с диагональными элементами, равными по модулю единице.

ДОКАЗАТЕЛЬСТВО. Так как является частным случаем нормального оператора, то по основной теореме о нормальных операторах, в некотором ортонормированном базисе он задаётся диагональной матрицей. Покажем, что собственные значения по модулю равны 1.

Пусть . тогда

.

Но , т. е. . Значит, , т. е. . □