
- •1. Принцип гомоморфізму – наукова основа моделювання.
- •2. Поняття економіко-математичної моделі.
- •7. Класифікація економіко-математичних методів та моделей.
- •8. Задача оптимізації.
- •9. Критерій оптимальності.
- •10. Задачі статичного та динамічного програмування.
- •11. Задача про планування випуску малого підприємства.
- •12. Задача про постачання вантажів від постачальників до замовників.
- •13. Задача про раціональний розкрій.
- •14. Задача про складання суміші.
- •15. Форми запису задачі лінійного програмування та їх інтерпретація.
- •16. Геометрична інтерпретація задачі лінійного програмування, графічний метод розв’язання задач лінійного програмування з двома змінними.
- •17. Симплексний метод.
- •18. Формування двоїстої задачі лінійного програмування, її економічна інтерпретація.
- •19. Теореми двоїстості та їх економічне значення.
- •20. Несиметричні двоїсті задачі.
- •21. Симетричні двоїсті задачі.
- •22. Двоїстий симплексний метод.
- •23. Транспортна задача.
- •27. Метод гілок і границь.
- •28. Розв’язання задач методом гілок і границь.
- •29. Загальна постановка задачі нелінійного програмування.
- •33. Поняття та природа економічного ризику
- •35. Основні види невизначеності :
- •36. Аналіз чинників невизначеності.
- •37. Класифікація ризиків.
- •42. Методи управління ризиком: уникнення ризику; попередження ризику; прийняття ризику; оптимізація ступеня ризику.
- •45.Кількісний аналіз ризику
- •46. Статистичний метод
- •47. Застосування ймовірності до оцінки рівня ризику
- •48. Метод аналогії
- •49. Експертні методи оцінювання ризиків
- •51. Ризик у абсолютному вираженні
- •52. Поняття сподіваного значення (математичного сподівання)випадкової величини,дисперсії та середньоквадратичного відхилення
- •53.Ризик у відносному вираженні
- •54. Поняття коефіцієнта ризику та коефіцієнта варіації
- •55.Коєфіцієнт сподіваних збитків
- •56. Ризик і нерівність Чебишева
- •57. Спеціальні методи оцінки ризику:на основі аналізу фінансового стану підприємства,еврестичні методи,метод аналізу доцільності витрат,оцінка ефективності нововведень
- •58. Оцінка систематичного ризику
- •59. Оцінка ризику на основі встановлених нормативів
- •60. Інші методи оцінки ризику
- •61. Предмет економетрики
- •62. Основні типи економетричних моделей
- •63. Лінійна регресія і кореляція:зміст та оцінка параметрів
- •64. Оцінка значимості параметрів лінійної регресії та кореляції.Інтервали довіри для параметрів регресії
- •65. Інтервальний прогноз на основі лінійного рівняння регресії
- •66.Нелінійна регресія.
- •67. Основні припущення, що лежать в основі методу найменших квадратів
- •68. Відбір факторів для побудови множинної регресії та вибір форми її рівняння.
- •69. Оцінка параметрів рівняння множинної регресії.
- •71. Оцінка надійності результатів регресії та кореляції.
- •72. Прогнозування та побудова інтервалів довіри для прогнозу залежної змінної у багатофакторній регресії.
- •73. Визначення мультиколінеарності та її природа.
- •74. Теоретичні та практичні наслідки мультиколінеарності в загальному випадку. Тестування мультиколінеарності та засоби її вилучення.
- •75. Причини появи залежності між помилками.
- •76. Визначення гетероскедастичності та її природа.
- •77. Тестування наявності гетероскедастичності.
- •78. Поняття узагальненої економетричної моделі.
- •79. Наслідки використання класичного мнк в угазальненій моделі.
- •80. Сутність умнк.
- •81. Використання умнк для оцінки параметрів регресії у випадках гетероскедастичності.
- •82. Основні елементи часового ряду.
- •83. Автокореляція рівнів часового ряду і виявлення його структури.
- •84 Моделювання тенденції часового ряду.
- •85. Виявлення сезонних та циклічних коливань
- •86. Стаціонарні часові ряди.
- •87. Однофакторні стохастичні моделі стаціонарних часових рядів.
- •88. Нестаціонарні часові ряди.
15. Форми запису задачі лінійного програмування та їх інтерпретація.
У загальному вигляді розв’язання задачі математичного програмування майже неможливо. Більш досконало вивчені задачі лінійного програмування. Це пояснюється тим, що більшість реальних економічних моделей зводиться до задачі лінійного програмування, внаслідок чого і методи розв’язку задач лінійного програмування найбільш розвинені. Загальною задачею лінійного програмування зветься задача знаходження максимального (мінімального) значення функції
Z = ∑ Cj*Xj , j=1
(Z = С1Х1 + С2Х2 + . . . + СnХn);
За умов функціональних обмежень:
а11х1 + а12х2 + . . . + a1nxn ≤ b1 ,
а21х1 + а22х2 + . . . + a2nxn ≤ b2 ,
аk1х1 + аk2х2 + . . . + aknxn ≤bk ,
нефункціональних обмежень:
xj ≤ 0 , де j = 1,2,3,. . . n;
а також aij; bi; cj – задані постійні величини.
Цільову функцію можливо оптимізувати на “max”, або на “min” – це не є принципово, бо у точці х* функція Z = f (x*) – досягає мінімуму, а функція Z = - f (x*) – досягає максимуму. Таким чином ми завжди можемо мінімізувати цільову функцію, не втрачаючи загальності підходу.
Цільова функція та усі функціональні обмеження мають лінійну форму відносно невідомих xj, що і дає цій задачі математичного програмування назву – лінійне програмування.
Невідомі, які присутні у лінійній моделі, відповідно нефункціональним обмеженням невід’ємні
В залежності від вигляду функціональних обмежень (нерівності або рівності) загальну задачу лінійного програмування поділяють на:
а) канонічну, якщо k = 0; l = n, де усі функціональні обмеження мають вигляд рівностей;
б) стандартну (симетричну), де k = m; l = n, де усі функціональні обмеження мають вигляд нерівностей.
Будь-які задачу лінійного програмування можливо звести до канонічної задачі шляхом перетворення функціональних обмежень нерівностей у обмеження рівності доданням до нерівностей невідомих невід’ємних величин:
ai1x1 + ai2x2 + . . . + ainxn + yi = bi ;
де yi ≤ 0; новим невідомим дають назви відповідно xn+1; xn+2; . . . ; хn+m; та відповідно xj ≤ 0 , де j = 1,2,3 . . . n; n + 1 . . . n + m;
функціональні обмеження набувають вигляд
S aij*xj + yi = bi , де і = 1, 2, 3 . . . , m; j=1
a11x1 + a12x2 + . . . + a1nxn + xn+1 = b1 ,
a21x1 + a22x2 + . . . + a2nxn + xn+2 = b2 ,
am1x1 + am2x2 + . . . + amnxn + xn+m = bm ,
кількість невідомих моделі xj ≤ 0 збільшилась до n + m .
Рішення системи рівнянь (обмежень) має назву базисного рішення, якщо усі вільні змінні дорівнюють нулеві. Сукупність значень невідомих (чисел) задачі математичного програмування, які задовольняють усім обмеженням задачі, мають назву припустимого рішення або плану.
Сукупність усіх припустимих рішень системи рівнянь є опукла множина. Або множина розв’язків задачі лінійного програмування є опуклою.
Базисне припустиме рішення задачі лінійного програмування відповідає одній з вершин або граней множини розв’язків.
Оптимальне рішення задачі лінійного програмування відповідає одному з базисних припустимих рішень, тобто досягається у вершині множини розв’язків, має другу назву – оптимальний план задачі лінійного програмування.