
- •1 Физическая технология топлив
- •1.1 Подготовка нефти к переработке
- •1.1.1 Описание работы электрообессоливающей установки (элоу) (рисунок 1)
- •1.2 Первичная переработка нефти
- •1.2.1 Описание работы установки авт-1 (рисунок 2)
- •1.2.2 Описание работы установки элоу-ат-6 (рисунок 3)
- •1.2.3 Описание работы установки элоу-атв-6 (рисунок 4)
- •1.2.4 Описание работы установки элоу-авт-4 по переработке газового конденсата (рисунок 5)
- •3 Химическая технология топлив и углеродных материалов
- •3.1 Термические процессы
- •3.1.1 Описание работы установки термического крекинга нефтяных остатков (рисунок 6)
- •3.1.2 Описание работы установки замедленного коксования (рисунок 7)
- •3.1.3 Описание работы установки термоконтактного коксования (рисунок 8)
- •3.1.4 Описание работы установки термического пиролиза легкого углеводородного сырья (рисунок 9)
- •3.2 Каталитические процессы
- •3.2.1 Каталитический крекинг а) Описание работы установки г-43-102 каталитического крекинга вакуумного газойля (рисунок 10)
- •Б) Описание работы установки г- 43-107 по переработке вакуумного газойля (рисунок 11)
- •3.2.2 Описание работы установки каталитического риформинга (рисунок 12)
- •3.2.3 Описание работы установки гидроочистки нефтяных дистиллятов (л-24-7) (рисунок 13)
- •3.2.4 Описание работы установки гидрокрекинга вакуумного газойля (рисунок 14)
- •I вариант гидрокрекинга - бензиновый, II вариант – дизельный
- •3.3 Получение индивидуальных продуктов
- •3.3.1 Описание технологической схемы сернокислотного алкилирования изобутана олефинами (рисунок 15)
- •3.3.2 Полимеризация (олигомеризация) пропан-пропиленовой фракции (рисунок 16)
- •3.3.3 Каталитическая изомеризация легких парафинов нормального строения (рисунок 17)
- •3.3.4 Производство метилтретбутилового эфира (мтбэ) (рисунок 18)
- •3.4 Переработка твердых топлив
- •3.4.1 Полукоксование твердых топлив (рисунок 19)
- •3.4.2 Газификация каменного угля (рисунок 20)
- •3.5 Производство нефтяных масел
- •3.5.1 Процесс деасфальтизации гудрона в сжиженном пропане (рисунок 21)
- •3.5.2 Селективная очистка масляного сырья фенолом (рисунок 22)
- •3.5.3 Селективная очистка масел фурфуролом (рисунок 23)
- •3.5.4 Депарафинизация масляного сырья в кетон-ароматическом растворителе (рисунок 24)
- •3.5.5 Депарафинизация масляного сырья комплексообразованием с карбамидом (рисунок 25)
- •3.5.6 Адсорбционная очистка масел (контактная очистка) (рисунок 26)
- •Список используемых источников
- •Содержание
- •Редактор л.А. Маркешина
- •450062, Республика Башкортостан, г. Уфа, ул. Космонавтов, 1
3.2.3 Описание работы установки гидроочистки нефтяных дистиллятов (л-24-7) (рисунок 13)
Гидроочистка является наиболее глубокой формой гидрогенизационных процессов. Гидроочистке подвергают как прямогонные дистилляты (бензин, керосин, дизельное топливо, вакуумный газойль), так и дистилляты вторичного происхождения (легкая фракция смолы пиролиза, бензины, легкие газойли коксования, каталитического крекинга, термического крекинга, висбрекинга). Гидроочистку используют для удаления из сырья сернистых, азотистых, кислородсодержащих соединений, а также для гидрирования непредельных углеводородов.
Сырье (дизельное топливо) предварительно нагревается в теплообменниках (на схеме не показано), смешивается с циркулирующим ВСГ, и подается в печь 3, где нагревается до температуры 380-400 0С (в зависимости от вида сырья). После печи смесь поступает в реактор 4. На некоторых установках часто предусмотрена 2 или 3 ступенчатая очистка сырья. Для увеличения температуры смеси или снятия экзотермического эффекта реакции между реакторами обычно вводят холодный ВСГ. После последнего реактора гидрогенизат поступает в газосепаратор высокого давления 6, где происходит процесс однократного испарения обычно при давлении, равном или несколько ниже давления в реакторе. Температура в газосепараторе 80-85 0С. Подбирая температуру в сепараторе регулируют концентрацию водорода (Н2) в циркулирующем ВСГ. Газовая фаза поступает в абсорбер 8, где происходит улавливание сероводорода (H2S) водными растворами моно-, диэтаноламина. После отчистки часть циркулирующего ВСГ выводится с установки в виде отдува, а основная часть восполняется свежим ВСГ.
После газосепаратора высокого давления 6 гидрогенизат поступает в газосепоратор низкого давления 7, где за счет понижения давления появляется газовая фаза. Газовая фаза поступает в абсорбер 9, где очищается от сероводорода, и выводится сверху в линию сухого газа.
Гидрогенизат из газосепаратора низкого давления 7 поступает во фракционирующий абсорбер 12, где из дизельного топлива удаляются растворенные газы, которые подаются на очистку от сероводорода в абсорбер 10, и бензиновая фракция. Бензиновая фракция используется как орошение 12, а ее балансовое количество откачивается с установки. Снизу 12 отводится гидроочищенное дизельное топливо, часть которого используется как горячая струя низа колонны 12, нагреваемая в печи 13. В качестве абсорбента колонны 12 используется бензин.
В десорбере 11 параллельно происходит регенерация потоков абсорбента (моноэтаноламина), насыщенных сероводородом. Сверху 11 отводится сероводород, а снизу регенерированный абсорбент подается в абсорберы 8, 9, 10.
Примерный материальный баланс процессов гидроочистки
Сырье |
Бензин |
Керосин |
Дизельное топливо |
Вакуумный газойль |
Взято, % |
|
|
|
|
Сырьё |
100 |
100 |
100 |
100 |
Водород 100%-ный на реакцию |
0,15 |
0,25 |
0,40 |
0,65 |
Итого: |
100,15 |
100,25 |
100,40 |
100,65 |
Получено, % |
|
|
|
|
Гидроочищенное топливо |
99 |
97,9 |
96,9 |
86,75 |
Дизельное топливо |
- |
- |
- |
9,2 |
Отгон (бензин) |
- |
1,10 |
1,3 |
1,3 |
Углеводородный газ |
0,65 |
0,65 |
0,60 |
1,5 |
Сероводород |
- |
0,20 |
1,2 |
1,5 |
Потери |
0,5 |
0,4 |
0,4 |
0,4 |
Итого: |
100,15 |
100,25 |
100,4 |
100,65 |
Рисунок 12 – Принципиальная технологическая схема каталитического риформинга
Рисунок 13 – Принципиальная технологическая схема гидроочистки дизельного топлива (Л-24-7)

