
- •15. Элементы теории функций комплексного переменного
- •15.1. Комплексные числа, действия над ними
- •15.2. Понятие функции комплексного переменного
- •15.3. Производная функции комплексного переменного.
- •15.4. Аналитические функции
- •15.5. Ряд Лорана. Особые точки и их классификация.
- •15.6.Таблица понятий и формул по теме «Комплексные числа»
15.6.Таблица понятий и формул по теме «Комплексные числа»
№ |
Понятие |
Определение, формула |
|||
1 |
Комплексное число (алгебраическая форма записи) |
z=x+iy, где x, y ; – мнимая единица |
|||
2 |
Действительная часть |
x= Re (x + iy) = Re z |
|||
3 |
Мнимая часть |
y = Im (x + iy )= Im z |
|||
4 |
z1 = z2 |
|
|||
5 |
Модуль комплексного числа |
Длина r вектора
|
|||
6 |
Аргумент комплексного числа |
|
|||
7 |
Главное значение аргумента arg z |
|
|||
8 |
Тригонометрическая форма записи |
|
|||
9 |
Связь между алгебраической и тригонометрической формами |
|
|||
10 |
Показательная форма записи |
|
|||
11 |
Сопряжённое число (формы записи) |
|
|||
12 |
Действия над комплексными числами
формула Муавра
извлечение корня
|
|
ПРИМЕРЫ РЕШЕНИЯ ПРАКТИЧЕСКИХ ЗАДАЧ
Пример15.1. Изобразить точками комплексной плоскости комплексные числа 2+3i, -4+2,5i, -2,7-3,3i, 3-2i.
Решение. Между точками числовой плоскости и множеством комплексных чисел существует взаимно однозначное соответствие
Любому комплексному числу x+iy соответствует только одна точка числовой плоскости, определяемая координатами (x, y), и обратно, любой точке плоскости соответствует только одно комплексное число, действительная часть которого равна абсциссе, а коэффициент при мнимой части – ординате точки.
П
оэтому
точка А
изображает комплексное число А=2+3i;
точка В – комплексное число В = -4+2,5i;
точка С – комплексное число С=-2,7-3,3i;
точка D – комплексное число D=3-2i.
Пример 15.2. Даны два числа в алгебраической форме:
z1=5 + 7i; z2=3-4i. Найти .
Решение.
.
Пример15.3.
Дано:
z1=10-7i;
z2=5i;
z3=3+4i;
z4=(-1+5i);
z5=1-3i.
Найти
Решение.
.
Пример
15.4. Даны
два числа в тригонометрической форме:
z1=2(cos
+isin
);
z2=5(cos
+ isin
).
Найти
.
Решение. r1=2; j1= ; r2=5; j2= .
Подставим эти значения r1, r2, j1 и j2 в формулу (15.11), получим
Пример15.5.
Заданы комплексные числа:
Требуется:
1) представить z1, z2, z3 в тригонометрической и показательной форме;
2)
вычислить
3)
вычислить все значения
.
Решение. 1. Чтобы записать комплексное число в тригонометрической или показательной формах, необходимо найти его модуль и аргумент по формулам (15.2) и (15.5):
отсюда
,
,
т. е.
,
Точка принадлежит первой четверти, поэтому
.
Тогда по формуле (15.3)
,
а по формуле (15.7)
.
Итак,
,
,
поэтому
,
,
т. е.
.
2. Воспользуемся тригонометрической формой комплексного числа z1 и формулой Муавра
3.
Перейдем к тригонометрической форме
комплексного числа
:
Комплексное число z4
лежит в 4-й четверти.
arctg
,
так как arctg
.
Воспользуемся
формулой (15.13), где
– арифметический корень:
,
(k=0,
1, 2, …).
при k=0
;
при k=1
;
при k=2
.
Пример15.6. Изобразить в комплексной плоскости линии, заданные следующим образом:
1)
;
2)
.
Решение.1. Линия - окружность с центром в начале координат с радиусом, равным 8, так как по определению - это расстояние от начала координат до точки z.
2.
– это расстояние между точками
и
.
Поэтому равенство
означает, что точки искомой линии удалены
на расстояние, равное 5 от точки
.
Т.е. искомая линия представляет собой окружность радиусом 5 с центром в точке .
Пример 15.7. Указать геометрические места точек комплексной плоскости, для которых выполняются следующие условия:
1)
;
2)
;
3)
;
4)
.
Решение.
1.
означает действительную часть комплексного
числа
,
т. е.
.
Поэтому вместо уравнения
можно написать
.
Это уравнение прямой, параллельной оси
ординат.
2. Уравнению удовлетворяет множество точек, находящихся на луче, выходящем из начала координат, который образует с осью абсцисс угол 30°.
3.
Искомое множество представляет из себя
угол, ограниченный лучами
и
,
4. Действительная часть комплексного числа . Следовательно, данное множество – правая полуплоскость
Пример 15.8. Дано w = z2, где z = x + i y. Найти Re w и Im w.
Решение.
w = (x + i y)2 = x2 + 2x i y + i2 y2 =
x3 + 2x i y – y2 =
= (x2 - y2) + 2x y i.
Отсюда
Re z2 = u (x, y) = x2 - y2 Im z2 = υ (x, y) = 2x y.
Пример 15.9. Изобразить на комплексной плоскости области, заданные следующими неравенствами, и установить, являются ли они односвязными.
;
.
Р
ешение
1) Условию
удовлетворяют точки вне круга радиусом
2 с центром в точке
,
за исключением его границы, уравнение
которой
.
Это односвязная область.
2)Условию
удовлетворяют точки вне круга с центром
в точке
радиусом 2 и условию
-
круг радиуса 4 с центром в той же точке
.
Следовательно, данное множество
представляет из себя кольцо, ограниченное
окружностями радиусов 2 и 4 с центром в
точке
.
Это двусвязная область.
Пример 15.10. Найти производную функции e5iz+7 и показать, что она дифференцируема при любом значении z.
Решение. функции ez и 5iz+7 дифференцируемы при всех значениях z. Поэтому и сложная функция, составленная из них, также дифференцируема:
(e5iz+7 )' = e5iz+7 (5iz+7)' = 5i e5iz+7 .
Пример 15.11. Найти все особые точки следующей функции, определить их характер:
Решение.
Так как функция
имеет три нуля:
– девятого порядка;
и
– второго порядка, то функция
имеет три полюса: в точке
– девятого порядка;
и
– второго порядка.
ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
Тема «Комплексные числа»
15.1. Даны комплексные числа z1 = 3i, z2 = 2 – 2i, z3 = 4 + 2i,
z4 = 4 – 2i, z5 = 1 – 5i, z6 = 4 + 3i.
а) на комплексной плоскости изобразить числа z1, z5, z6;
б)
найти
.;
в) на комплексной плоскости изобразить множества чисел, удовлетворяющих условиям
Ответ:
б)
15.2.
Записать в алгебраической форме число
, если
.
Ответ:
.
15.3.
Даны
комплексные числа
Найти
и
Ответ:
1;
15.4. Найти модуль и аргумент комплексного числа
Ответ: