
- •Введение
- •Содержание
- •Модуль 1 введение. Основы метрологии
- •Тема 1.1 Основные метрологические понятия
- •Тема 1.2 Средства и методы измерений
- •Модуль 2 контрольно-измерительные приборы
- •Тема 2.1 Измерение температуры
- •Контактное измерение температуры
- •Электронный лабораторный термометр
- •Электроконтактные термометры
- •Биметаллический термометр
- •Дилатометрический термометр
- •Манометрический термометр
- •Термометр сопротивления
- •Термоэлектрический термометр
- •Термопара
- •Автоматический показывающий потенциометр
- •Автоматический одноканальный регистрирующий потенциометр
- •Термоманометры
- •Бесконтактное измерение температуры Пирометр
- •Измерение температуры с помощью пирометров излучения
- •Радиационные пирометры
- •Тема 2.1 Измерение давления и разрежения
- •Классификация приборов для измерения давления
- •Грузопоршневой манометр
- •Пружинные манометры
- •Манометры с трубчатой пружиной
- •Манометры с пластинчатой пружиной
- •Манометры с коробчатой пружиной
- •Баровакуумметры
- •Дифференциальные манометры
- •Тема 2. 3. Измерение уровня жидкости
- •Визуальные уровнемеры
- •Поплавковые уровнемеры
- •Буйковый метод измерения уровня в промышленности
- •Пьезометрический уровнемер
- •Дифманометрические уровнемеры
- •Уровнемеры ультразвуковые
- •Радиоизотопные уровнемеры
- •Электрические уровнемеры
- •Уровнемеры для сыпучих материалов
- •Модуль 3 автоматическое регулирование
- •Тема 3.1. Основные понятия и определения
- •Индуктивный датчик
- •Реле Прерывистое воздействие на процесс посредством реле называется релейным.
- •Принцип действия и устройство электромагнитных реле
- •Поляризованные электромагнитные реле
- •Тема 3.2 Регуляторы давления газа прямого действия
- •Термины, используемые для характеристики работы регуляторов давления газа
- •Регулятор давления газа рд - 32м
- •Технические характеристики регулятора давления газа рд – 32м
- •Пропускная способность регулятора давления газа рд-32м в зависимости от входного давления
- •Регулятор давления газа комбинированный рднк-400
- •Технические характеристики регулятора давления газа рднк - 400
- •Регулятор давления газа домовый рдгд-20
- •5, 17, 19, 29 — Шток; 6 — рычажной механизм; 7, 16 — мембрана;
- •10, 14, 41, 42 — Регулировочные гайки; 11 — крышка мембранного узла;
- •Регулятор давления газа рдск-50
- •Технические характеристики рдск-50
- •Пропускная способность регуляторов в зависимости от входного давления
- •Устройство и принцип работы рдск-50
- •Регуляторы давления газа рдг-25, рдг-50, рдг-80, рдг-150
- •Технические характеристики регуляторов давления газа типа рдг
- •Тема 3.3 Регуляторы давления газа непрямого действия Регулятор давления газа универсальный конструкции Казанцева рдук - 2
- •Технические характеристики регулятора давления газа непрямого действия типа рдук
- •Регулятор давления газа блочный конструкции Казанцева рдбк. Устройство и принцип работы регулятора давления газа рдбк1-100-70
- •Технические характеристики регулятора давления газа рдбк1-100-70
- •Регулятор давления для сжиженного газа рдсг 1-1,2
- •Тема 3.4 Исполнительные механизмы и регулирующие органы
- •Поворотные пневматические приводы
- •Задвижка клиновая фланцевая с пневматическим поршневым исполнительным механизмом
- •Регулирующие органы
- •Конструкция проходного запорно-регулирующего клапана
- •Клапаны предохранительно-запорные (пзк)
- •Клапаны пкн-50, пкн-100, пкн-200, пкв-50, пкв-100, пкв-200, пквэ
- •Технические характеристики запорных клапанов типа пкн и пкв
- •Пределы настройки контролируемого давления пкн (э), пкв (э)
- •Модуль 4 автоматизация газового хозяйства
- •Тема 4.1. Автоматизация бытовых газовых установок
- •Принцип работы водонагревательного аппарата
- •Емкостный водонагреватель
- •Тема 4.2 Правила выполнения функциональных схем автоматики Язык схем
- •Молекулы, атомы и электроны Атом – это положительно заряженное ядро с вращающимися вокруг него электронами, несущими отрицательные заряды (рис.117).
- •Полупроводники. Диоды и транзисторы
- •Транзистор
- •Емкостные датчики
- •Фотодатчики
- •Подключение датчиков
- •Классификация типов схем автоматического управления
- •Тема 4.3 Автоматика котельных установок Понятие о котельной установке
- •Автоматическое регулирование котельных установок
- •Функциональное назначение щита управления тягодутьевыми механизмами (щу – тдм).
- •Для управления тягодутьевыми механизмами котла предусмотрены следующие режимы работы:
- •Задание установок для каждого режима:
- •Автоматизация водогрейного котла
- •Цели автоматизации газоиспользующего оборудования
- •Модуль 5 централизация контроля управления в газовом хозяйстве
- •Тема 5.1 Система телемеханизации в газовом хозяйстве
- •Тема 5.2 Автоматизированные системы управления
- •Структура, функции и технические средства телемеханизации и автоматизированных систем управления технологическими процессами
- •Справочная информация
- •Магнитоэлектрический гальванометр
- •Термистор
- •Резистор
- •Пьезоэлектрический эффект
- •Паровые котлы Котлы предназначены для производственных и отопительных нужд, пищевой промышленности, транспорта и сельского хозяйства.
- •Список спользуемых источников
Термины, используемые для характеристики работы регуляторов давления газа
Статическая ошибка – это отклонение регулируемого давления от заданного при установившемся режиме, также называют неравномерностью регулирования.
Динамическая ошибка - это максимальное отклонение давления в переходный период от одного режима к другому.
Ход клапана — это расстояние, на которое перемещается клапан от седла.
Диапазон настройки — это разность между верхним и нижним пределами давления, между которыми может быть осуществлена настройка регулятора.
Верхний предел настройки давления — это максимальное выходное давление, на которое может быть настроен регулятор.
Зона регулирования — разность между регулируемыми давлениями при 10 % и 90 % от максимального расхода.
Зона пропорциональности — это изменение регулируемого давления, необходимого для перемещения регулирующего органа (клапана) на значение его номинального (полного) хода.
Условная пропускная способность — это величина, равная расходу воды плотностью 1 г/см³ (1000 кг/м³) в кубических метрах в час через регулятор при номинальном (полном) ходе клапана и перепаде давления 0,1 МПа (1 кг/см²).
Относительная протечка — это отношение максимального значения протечки воды через затвор регулирующего органа при перепаде давления на 0,1 МПа к условной пропускной способности.
Основными элементами регулирующих (дросселирующих) органов являются затворы.
Они могут быть односедельные, двухседельные, диафрагменные и шланговые, крановые и заслоночные.
В городских системах газоснабжения, в основном, применяют регуляторы с одно- и двухседельными затворами, реже — с заслоночными и шланговыми .
Рис. 64. Схемы дросселирующих органов регуляторов давления газа: а — с односедельным затвором; б — с двухседельным; в — с заслоночным; г — со шланговым. |
Односедельные, двухседельные затворы могут выполняться как с жестким уплотнением (металл по металлу), так и с эластичным (прокладки из маслобензостойкой резины, кожи, фторопласта и т. п.). Такие затворы состоят из седла и клапана. Достоинством односедельных затворов является то, что они легко обеспечивают герметичность уплотнения. Однако клапаны односедельных затворов являются неразгруженными, т. к. на них действует разность входного и выходного давлений.
|
В регуляторах давления газа широко применяют тарельчатые плоские клапаны с эластичным уплотнением.
Полный ход плоского клапана, при котором будет осуществляться процесс регулирования, определяется высотой подъема клапана h:
h=0,25 dс
Для примера: регулятор с диаметром седла 4 мм имеет полный ход клапана 1 мм.
Практически высоту подъема плоского тарельчатого клапана принимают (0,3+0,4)dс.
Дальнейший подъем клапана не сказывается на его пропускной способности.
Двухседельные затворы при тех же условиях обладают значительно большей пропускной способностью вследствие большей суммарной площади проходного сечения седел.
Эти клапаны являются разгруженными, однако при отсутствии расхода газа они не обеспечивают герметичности, что объясняется трудностью посадки затвора одновременно по двум плоскостям.
Заслоночные затворы применяют обычно в ГРП с большими расходами газа (например, ТЭЦ) и используют, как регулирующий орган регуляторов непрямого действия с посторонним источником энергии.
Шланговый регулирующий орган имеет эластичный шланг 2 и стакан 3, расположенный в корпусе 4. В стакане 3 есть два ряда продольных прорезей 5 и 6 для прохода газа и поперечная перегородка 1.Перегородка 1 и эластичный шланг 2 разделяют полость устройства на три камеры: А — входного, В — выходного и Б — управляющего давления. При отсутствии входного давления шланг герметично отделяет камеру А от камеры В под действием предварительного натяжения, с которым шланг надет на стакан. При подаче Р1 шланг отжимается от стакана. При подаче управляющего давления в камеру Б изменяется зазор между шлангом и стаканом и происходит регулирование.
В регуляторах давления газа, устанавливаемых в ГРП, в качестве чувствительного элемента и одновременно привода используют мембраны (плоские и гофрированные).
Плоская мембрана представляет собой круглую плоскую пластину из эластичного материала.
Мембрана зажимается между фланцами верхней и нижней мембранных крышек.
Центральная часть мембраны с обеих сторон зажата между двумя круглыми металлическими дисками (обжимными). Жесткие диски увеличивают перестановочную силу и уменьшают неравномерность регулирования.
Перестановочное усилие, развиваемое мембраной, зависит от величины эффективной площади мембраны. Она изменяется в зависимости от прогиба мембраны
Перестановочное усилие определяется по формуле:
N = cFP,
где c — коэффициент активности мембраны; F — площадь мембраны (в проекции на плоскость ее заделки); P — избыточное давление рабочей среды ( c F — активная площадь мембраны).
В связи с тем, что при различном прогибе мембраны значения коэффициента активности изменяются, изменяется и перестановочное усилие мембраны.
Диаметр обжимных дисков принято выбирать не более 0,8 диаметра мембраны для обеспечения необходимой подвижности мембранного привода.
Мембрана (от лат. membrana — кожица, перепонка) – это гибкая, тонкая плёнка, приведённая внешними силами в состояние натяжения и обладающая вследствие этого упругостью.
Выбор регуляторов давления газа необходимо производить, учитывая:
тип объекта регулирования;
максимальный и минимальный требуемый расход газа;
максимальное и минимальное входное давление;
максимальное и минимальное выходное давление;
точность регулирования (максимально допустимое отклонение регулируемого давления и время переходного процесса регулирования);
необходимость полной герметичности при закрытии регулятора;
акустические требования к работе регуляторов с высокими входными давлениями и большими расходами газа.
Основным требованием при подборе регулятора давления является обеспечение устойчивости его работы на всех возможных режимах, что проще всего добиться правильным выбором регулятора для того или иного объекта.
Для тупикового газопровода (с отбором газа в конце газопровода) следует применять статические регуляторы прямого действия.
В случае больших расходов газа — регуляторы непрямого действия.
Для кольцевых и разветвленных газовых сетей, учитывая их способность к самовыравниванию, можно использовать любые типы регуляторов, но, так как, эти сети имеют большие расчетные расходы, то лучше применять астатические регуляторы непрямого действия (с пилотом). Эти регуляторы позволяют более точно поддерживать давление после себя.
При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора.
Возникновение шумов вызвано газодинамическими колебательными процессами у дроссельных органов и стенок регуляторов.
При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, сильной вибрации регулятора.
Наиболее эффективный метод снижения амплитуд колебаний — установка гасителя шума (перфорированного патрубка) сразу после редуцирования газа.