
- •Глава 1. Функція
- •§1. Функції, їх властивості та графіки
- •Співвідношення в прямокутному трикутнику
- •Ф ормули площ і об’ємів
- •Запитання для самоконтролю
- •§2. Простіші перетворення графіків функції
- •Запитання для самоконтролю
- •Запитання для самоконтролю
- •§ 3. Наближене розв’язування рівнянь
- •§4 . Функції багатьох змінних
- •Запитання для самоконтролю
- •§5. Границя і неперервність функції
- •8.Основні поняття математичної статистики.
- •16. Знайти границі функцій :
- •7. Математичне сподівання і дисперсія випадкової величини.
- •4. Формула повної ймовірності.
- •5. Формула Бернуллі.
- •6. Випадкова величина. Закон її розподілу.
- •Запитання для самоконтролю
- •Глава 2 . Похідна і її застосування
- •§6. Похідні і диференціали функцій
- •1.Похідна , її фізичний і геометричний зміст.
- •Правила диференціювання
- •2. Визначення ймовірності події.
- •3. Операції над подіями.
- •§ 30. Основні поняття теорії ймовірностей
- •1.Основні поняття і означення.
- •2. Диференціал функції. Застосування диференціала до наближених обчислень.
- •17. Знайти похідні наступних функцій:
- •Глава 10. Елементи теорії ймовірностей
- •§ 29. Основні поняття комбінаторики
- •Запитання для самоконтролю
- •Запитання для самоконтролю
- •§7. Застосування похідної
- •1.Монотонність функції. Екстремум функції.
- •2. Випуклість графіка функції. Точки перегину.
- •3. Побудова графіків функції.
- •Запитання для самоконтролю
- •Глава 3. Інтеграл і його застосування
- •§8. Невизначений інтеграл
- •Невизначений інтеграл і його властивості.
- •40. Знайти інтеграли:
- •Парабола і її рівняння .
- •Гіпербола та її рівняння .
- •Запитання для самоконтролю
- •2. Інтегрування підстановкою і по частинах
- •3.Еліпс і його рівняння.
- •§ 28. Криві другого порядку .
- •41. Знайти невизначений інтеграл:
- •§ 27. Рівняння прямої та площини в просторі.
- •3. Рівняння площини , що проходить через задану точку
- •4. Загальне рівняння площини.
- •5. Рівняння площини , що проходить через через три точки m1(x1, y1, z1) , m2(x2, y2, z2) , m3(x3, y3, z3) .
- •Кут між двома прямими.
- •42. Знайти інтеграли:
- •§9. Визначений інтеграл
- •1. Формула Ньютона-Лейбніца. Основні властивості визначеного інтеграла.
- •43. Обчислити визначені інтеграли:
- •1. Параметричне і канонічне рівняння прямої
- •2. Рівняння прямої , що проходить через дві точки .
- •3. Рівняння прямої, що проходить через точку перпендикулярно даному вектору .
- •Ділення відрізка у даному відношенні .
- •§ 26. Різновиди рівнянь прямої на площині .
- •§10. Застосування визначеного інтеграла
- •1. Обчислення площ плоских фігур.
- •Глава 9. Елементи аналітичної геометрії
- •§ 25. Рівняння лінії на площині
- •Поняття про лінію та її рівняння .
- •Знаходження відстані між двома точками .
- •Запитання для самоконтролю
- •2. Обчислення об’єму тіла.
- •44. Обчислити площі фігур, обмежених лініями:
- •§ 11. Застосування визначеного інтеграла до розв’язування фізичних задач.
- •1.Знаходження шляху, пройденого тілом при прямолінійному русі.
- •Властивості векторного добутку
- •§24. Векторний добуток векторів.
- •2. Обчислення роботи сили, при прямолінійному русі тіла.
- •3. Обчислення роботи, затраченої на розтяг або стискання пружини.
- •§ 23. Вектори в системі координат.
- •Запитання для самоконтролю
- •Глава 8. Елементи векторної алгебри
- •§ 22. Вектори .
- •Запитання для самоконтролю
- •Глава 4. Комплексні числа
- •§ 12 . Означення комплексних чисел і дій над ними
- •119. Розв’язати за формулами Крамера системи рівнянь :
- •120. Розв’язати системи рівнянь :
- •§21. Розв’язування систем лінійних рівнянь за формулами Крамера
- •2. Тригонометрична і показникова форми комплексного числа .
- •115. Знайти добуток матриць:
- •116. Обчислити :
- •113. Додати матриці а і в , якщо :
- •114. Обчисліть лінійні комбінації матриць:
- •3. Дії над комплексними числами в тригонометричній і показниковій формах.
- •4. Застосування комплексних чисел в розрахунку фізичних величин .
- •§20. Матриці
- •Лінійні операції над матрицями.
- •111. Обчислити визначники :
- •Запитання для самоконтролю
- •Глава 7. Елементи лінійної алгебри
- •§19. Визначники
- •Глава 5. Диференціальні рівняння
- •§ 13. Диференціальні рівняння першого порядку
- •1.Поняття про диференціальне рівняння
- •2. Диференціальні рівняння з відокремлюваними змінними.
- •Запитання для самоконтролю
- •§ 18. Ряди Фур’є
- •Алгоритм розв’язання
- •3. Лінійні диференціальні рівняння першого порядку.
- •§ 17. Ряд Тейлора
- •Алгоритм розв’язання
- •Запитання для самоконтролю
- •§ 16. Функціональні ряди. Степеневі ряди.
- •1. Функціональні ряди.
- •2.Степеневі ряди.
- •§ 14. Диференціальні рівняння другого порядку
- •1.Простіші диференціальні рівняння другого порядку.
- •4. Знакозмінні ряди
- •5. Абсолютна та умовна збіжності
- •2.Лінійні однорідні диференціальні рівняння другого порядку із сталими коефіцієнтами.
- •Глава 6. Ряди
- •§ 15. Числові ряди
- •1. Означення числового ряду.
- •2. Збіжні і розбіжні ряди.
- •3. Знакододатні ряди. Достатні ознаки збіжності
- •Запитання для самоконтролю
§20. Матриці
Прямокутна таблиця чисел , i= 1,2,…, m ; j=1,2,…,n , складена з m рядків і n стовпців і записана у вигляді
А
=
називається матрицею розміром m n .
Якщо
m
n
, то
матриця називається прямокутною
.
Якщо m = n , то матриця називається квадратною. Нульовою називається матриця , у якої всі елементи дорівнюють нулю . Позначають її буквою О. Квадратна матриця називається діагональною , якщо всі її елементи , крім тих що лежать на головній діагоналі , дорівнюють нулю. Діагональна матриця , у якої кожний елемент головної діагоналі дорівнює одиниці , називається одиничною і позначається буквою Е. Якщо матриця складається з одного рядка , то вона називається матриця-рядок .Якщо матриця складається з одного стовпця , то вона називається матриця-стовбець. Якщо нижче або вище головної діагоналі матриці нулі , то матриця називається трикутною.
Лінійні операції над матрицями.
Сумою матриць А і В називають таку матрицю , елементи якої дорівнюють сумі відповідних елементів матриць А і В . Додавати можна тільки матриці ,що мають однакову будову: або прямокутні розміром m n , або квадратні порядку n.
46
Трикутний визначник дорівнює добутку головної діагоналі .
Вправи
111. Обчислити визначники :
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
112. Розв’язати рівняння:
1.
2.
3.
4.
47
При
цьому число
називається комплексом
напруги
.
Приклад
. Написати
комплексне число , що відповідає рівнянню
.
Розв’язання.
.
Вправи
69. Записати в тригонометричній формі комплексне число:
1)
z
=1+i;
2) z=-2+2i
;
3) z=-3i; 4) z=
;
5) z=-3+3i; 6) z=5;
7) z= -2-2i; 8) z=1-i; 9) z=5i.
70.
Записати число
в показниковій формі.
71. Записати число z=-5i в тригонометричній і показниковій формах.
72.
Записати число
в тригонометричній і показниковій
формах.
73. Записати комплексне число в алгебраїчній і в показниковій формах:
74. Записати комплексне число в алгебраїчній і показниковій формах:
73
1)
2)
3)
4)
75. Дано комплексні числа z1=3(cos 330 o+і sin 330o) і
z2=2(cos 60o+і sin 60o).
Знайти:
а) z1z2;
б)
z1/z2;
в)
z24;
г)
76.
Дано:
Знайти:
а) z1z2;
б)
z1/z2;
в)
z15;
г)
.
77.
Запишіть числа
і
в показниковій формі, обчисліть: 1)
z1z2;
2) z1/z2;
3) z2/z1;
4) z16;
5) z26.