- •Н.П. Журавлев, о.Б. Маликов
- •Транспортно-грузовые системы
- •Москва - 2005
- •Оглавление
- •Глава 1. Структура и функции транспортно - грузовых логистических систем……………….........................................................
- •Глава 2. Технические средства транспортно- грузовых систем
- •Глава 3. Грузоподъемные машины…………………..……………….
- •Глава 4. Погрузочно-разгрузочные машины . . . . …………………
- •Глава 5. Транспортирующие машины………….……………………..
- •Глава 9. Организация пртс работ на основе принципов логистики…………………………………………………………………………………
- •Глава 10. Транспортно-грузовые комплексы для тарно-штучных и штучных грузов………………………..………………..……
- •Глава 13. Транспортно-грузовые комплексы для навалочных и насыпных грузов открытого храния…………………………
- •Глава 14. Транспортно-грузовые комплексы для скоропортящихся грузов …………………………………
- •Глава 15. Транспортно-грузовые комплексы для лесных
- •Введение
- •Глава 1. Структура и функции транспортно-грузовых логистических систем
- •Системный подход к организации перевозок грузов
- •1.2. Понятие логистики
- •Деловая
- •Производственно-транспортные логистические системы
- •Производственная логистика
- •Производство
- •1.4. Транспортно-грузовые системы
- •Подведем итоги
- •Повторим
- •Глава 2. Технические средства транспортно-грузовых систем
- •2.2. Технические и эксплуатационные параметры подъемно- транспортных машин
- •2.3. Надежность подъемно-транспортных машин
- •Подведем итоги
- •Глава 3. Грузоподъемные машины
- •3.1. Назначение, классификация и область применения грузоподъемных машин
- •3.1 Подъемная лебедка
- •3.2 Маневровый шпиль
- •3.3. Мачтовый подъемник
- •3.2. Режимы работы грузоподъемных машин
- •Классы ответственности кранов и их элементов
- •3.3. Привод, узлы и детали грузоподъемных машин
- •3.4. Конструктивные схемы основных механизмов гпм
- •3.4. Типовая схема механизма подъема
- •3.5. Механизм подъема со сдвоенным полиспастом
- •3.6. Схемы механизма передвижения мостового крана
- •3.7. Схема механизма передвижения с канатной тягой
- •3.8. Полиспастный привод механизма изменения вылета стрелы
- •3.9. Гидравлический привод изменения вылета стрелы
- •3.10. Схема механизма поворота стрелового крана
- •3.11.Варианты схема опорно-поворотных устройств
- •3.5. Грузоподъемные краны с пролетным строением
- •3.12. Однобалочный кран опорного типа
- •3.13. Однобалочный кран подвесного типа
- •3.14. Двухбалочный мостовой кран общего назначения
- •3.5.2. Краны-штабелеры
- •3.15. Мостовой кран-штабелер
- •3.18. Козловой кран ккс-12,5
- •3.19. Контейнерный козловой кран грузоподъемностью 34 т
- •3.20. Кабельные краны
- •3.6. Стреловые краны
- •3.21. Стреловые краны
- •3.22. Диаграмма грузового момента автомобильного крана
- •3.7. Башенные и портальные краны
- •3.23. Башенные краны
- •3.24. Портальный кран
- •3.8. Крановые грузозахватные устройства
- •3.25. Крановые грузозахватные устройства
- •3.9. Устойчивость кранов
- •3.26. Схема расчета устойчивости стрелового крана
- •Подведем итоги
- •Повторим
- •Глава 4. Погрузочно-разгрузочные машины
- •4.1. Назначение и классификация погрузочно-разгрузочных машин
- •4.2. Напольные безрельсовые погрузчики и штабелеры
- •4.3. Самоходные ковшовые погрузчики
- •4.2. Одноковшовые фронтальные погрузчики
- •4.4. Самоходные погрузчики непрерывного действия
- •4.3. Питатели погрузчиков непрерывного действия
- •4.4. Погрузчик тм-1а
- •4.5. Вагоноразгрузочные машины и устройства
- •4.5. Стационарный роторный вагоноопокидыватель
- •4.6. Боковой вагоноопрокидыватель
- •4.7. Инерционные вагоноразгрузочные машины
- •4.8. Разгрузочно-штабелирующая машина с-492
- •4.9. Вагоноразгрузочная машина мвс-4
- •4.10. Бурофрезерная машина рпб-240-9-2
- •4.11. Виброрыхлитель дп-6с
- •4.12. Самоходный реверсивный вибратор срв
- •Подведем итоги
- •Повторим
- •Глава 5. Транспортирующие машины
- •5.2. Конвейерные системы
- •Определить мощность привода конвейера по приближенной формуле: ,
- •5.3. Установки пневматического транспорта
- •5.4. Установки гидравлического транспорта
- •5.5. Подвесные канатные дороги
- •Подведем итоги
- •Повторим
5.4. Установки гидравлического транспорта
В ряде ситуаций оказывается целесообразным применение для грузопереработки гидротранспортных установок. В них поток воды, обгоняя твердые частицы насыпного груза, сообщает им движущую силу. Широкое применение гидравлический транспорт получил в технологических схемах комплексной гидромеханизации горных и земляных работ, гидротехническом и гидромелиоративном строительстве.
Гидравлический транспорт применяют не только для технологических перевозок, но и для перемещения грузов между сырьевыми базами и предприятиями. В США много лет эксплуатируется трубопровод длиной 173 км, производительностью 1 млн т угля в год. Построен трубопровод протяжением 115 км через горы Колореф для транспортировки 700 тыс. т асфальта в год. В Канаде разработан проект трубопровода длиной 500 км для транспортировки угля. Уголь по трубопроводу протяжением 10 км подается с шахты на обогатительную фабрику ОАО «Западно-Сибирский металлургический комбинат».
К преимуществам гидравлического транспорта относятся высокая производительность и большая длина транспортирования без перегрузок по сложной трассе с подъемами под любым углом и по вертикали; отсутствие механического оборудования на трассе трубопровода (за исключением сосредоточенных в отдельных пунктах машинных отделений); несложное техническое обслуживание; возможность совмещения транспортирования с некоторыми технологическими процессами ("мокрым" обогащением полезных ископаемых, гашением и гранулированием шлаков, сортированием по крупности и т. п.); возможность полной автоматизации и, следовательно, невысокая трудоемкость.
Недостатками гидравлического транспорта, сужающими область его применения, являются ограничения по роду и характеристикам перемещаемых грузов, в частности, по их крупности, что вызывает необходимость дробления груза; повышенный износ трубопровода и входящих в соприкосновение с гидросмесью механических частей при перемещении абразивных грузов; увеличенный расход энергии; потребность в больших количествах воды; опасность замерзания в зимних условиях.
Наиболее простым и дешевым является самотечный гидравлический транспорт (рис. 5.11, а), при котором перемещение пульпы ведется по лоткам с уклоном 0,03 — 0,04, а при высоких концентрациях пульпы с содержанием твердого груза в пульпе около 14 % - с уклоном 0,04 - 0,06.
Рис.5.11. Схемы гидротранспортных установок
Груз из бункера 1 выдается через затвор 2 и ленточным конвейером 3 доставляется в смесительную воронку 4. Туда же по трубе 5 подается вода для образования пульпы. Под действием напора, созданного разностью уровней пульпы в местах входа и выхода из пульпопровода 6, груз доставляется в пункт назначения 7. Однако, этот вид гидротранспорта имеет ограниченное применение, так как перемещение грузов осуществляется только в одном направлении (вниз за счет естественного напора).
Напорные гидротранспортные установки различаются способом ввода перемещаемого груза в трубопровод, который определяет и применяемое механическое оборудование. В схеме (рис. 5.11, б) груз 9, подлежащий транспортированию, смешивается в зумпфе (резервуаре) 8 с водой и пульпонасосом или землесосным снарядом 10 подается в пульпопровод 11. С грохота и водоотделителя 14 вода стекает в резервуар 16, а груз попадает в приемное устройство 15. Для обратного возвращения воды в зумпф предусматривается насос 13 и водопровод 12.
В схеме (рис. 5.11, в) вода и груз в пульпопровод подаются раздельно. Водяной насос 20 забирает воду из резервуара 21 и нагнетает в трубопровод чистую воду, а перемещаемый груз вводится в напорный трубопровод через специальное устройство 19, состоящее из камеры с питателем. Пульпа по трубопроводу 18 подается в приемное устройство 17, где происходит отделение груза от воды, как и в предыдущей схеме. Преимуществом первой напорной схемы является отсутствие довольно сложного питающего устройства, а второй — упрощение основного механического агрегата — водяного насоса, работающего на чистой воде, из-за уменьшения его износа и повреждений твердыми частицами груза.
Гидромеханизация успешно применяется на выгрузке песчано-гравийной массы груза из судов, при выгрузке свеклы из вагонов, для шлако- и золоудаления из котельной, для спуска в шахту и транспортирования к забоям материала (шлака, дробленой породы и др.), служащего для закладки выработанного пространства. Современные гидротранспортные установки имеют системы автоматики и телеуправления, которые позволяют с одного пульта управлять гидротранспортной системой и осуществлять контроль за работой всех механизмов (насосов, питателей, смесителей и т. д.).
При расчете гидротранспортных установок по заданным объемам или производительности, характеристике груза (плотности, гранулометрическому составу и др.), характеристике трассы (длина, высота подъема, наличие горизонтальных и вертикальных поворотов и т. д.) определяют необходимую скорость движения пульпы, потребное количество воды, диаметр трубопровода, сопротивления движению и потребный напор или давление для их преодоления, производительность насоса и мощность двигателя, а в самотечных установках - размеры желоба и необходимый уклон.
Для обеспечения нормального режима перемещения груза скорость движения гидросмеси vп должна быть не менее критической vкр (табл. 5.18.), под которой
Таблица 5.18
Значения vкр, м/с
Диаметр трубопровода, мм |
Груз |
|||
с глинистыми частицами |
песок с примесью глины |
гравий, щебень |
уголь рядовой |
|
200 |
1,6 |
1,9 |
3,0 |
2,0 |
300 |
1,8 |
2,1 |
3,6 |
2,5 |
400 |
2,2 |
2,4 |
4,3 |
3,0 |
500 |
2,5 |
3,0 |
4,8 |
3,3 |
600 |
2,7 |
3,2 |
5,3 |
3,6 |
(5.6.
При транспортировании кусковых грузов с размером куска больше 2 мм критическую скорость можно найти по формуле:
,
где с =8,5…9,5 – коэффициент, полученный опытным путем;
f- обобщенный коэффициент трения груза о нижнюю стенку трубы (табл.5.19.).
а – соотношение плотностей частиц груза γг и несущей среды (воды) γв:
g – ускорение свободного падения, м/с;
Таблица 5.19.
Значения f
Груз |
Куски с кромками |
Груз |
Куски с кромками |
||
острыми |
округленными |
острыми |
округленными |
||
Каменный уголь |
0,3-0,2 |
0,25-0,15 |
Известняк |
0,45-0,4 |
0,4-0,35 |
Антрацит |
0,15 |
0,1 |
Гравий |
- |
0,4-0,35 |
Песчаник |
0,55-0,5 |
0,5-0,45 |
Руда |
0,65-0,75 |
0,6 |
D – диаметр трубопровода, м;
s – объемная концентрация гидросмеси, м3/м3.
Объемная концентрация представляет собой отношение объемной производительности установки по грузу Vг , м3/ч к расходу гидросмеси Vгс, м3/ч:
,
где Vв – расход воды, м3/ч.
Экономичность гидравлического транспортирования зависит от удельного расхода воды на транспортирование груза, м3/м3. При расчете требуется определить расход воды, диаметр водовода, удельные потери напора, мощность привода.
Выбор гидротранспортной установки начинается с прокладки трассы, выявления ее длины и перепада высот.
Потребная производительность гидротранспортной установки принимается равной заданному грузопотоку ТГК, то есть потребная часовая производительность установки по твердому материалу (грузу):
,
м3/ч,
где Qтм – сезонный грузопоток, т;
γг – объемная плотность груза, т/м3;
Тс – сезонный фонд времени работы гидротранспорта, ч;
кв - коэффициент использования установки по времени (кв=0,65…0,75).
Объем пульпы, перемещаемой за 1 ч равен
Vп=Vг+Vв .
С другой стороны:
,
м3/ч,
где D – диаметр трубопровода, м;
vп – скорость движения пульпы по трубе, м/с.
Диаметр трубопровода можно вычислить по формуле:
,
м. (5.7.)
По вычисленной величине D следует подобрать ближайший меньший диаметр трубы из ряда, предусмотренного стандартом, определить по формуле (5.7.) фактическую скорость гидросмеси и проверить выполнение условия (5.6.).
Для определения необходимого напора гидроустановки надо найти суммарные потери напора в трубопроводах H:
,
где к =1,05…1,1– коэффициент, учитывающий потери напора от местных сопротивлений;
Нг , Нв – потери напора соответственно на горизонтальных и вертикальных участках трубопровода.
,
где λ – коэффициент сопротивления движению пульпы:
,
где
– объемная
плотность гидросмеси.
Потери напора на вертикальных участках высотой Σh равны
.
Мощность электродвигателя землесоса определяется по формуле:
,
кВт,
где кз = 1,1…1,2 – коэффициент запаса мощности .
По найденной мощности и потребной производительности подбирается землесос (табл.5.20).
Таблица 5.20
Технические характеристики землесосов
Марка агрегата |
Подача, мЗ/ч |
Напор м |
Мощность, кВт |
||
Насос ГрАТ 85/40-0 |
|
85 |
|
40 |
30 |
Насос ГрАК 170/40-1 |
|
170 |
|
40 |
75 |
Насос ГрАТ 225/67-2 |
|
225 |
|
67 |
37 |
Насос ГрАТ 350/40-2 |
|
350 |
|
40 |
132 |
Насос ГрАТ 450/67-3 |
|
450 |
|
67 |
132 |
Насос ГрАТ 700/40-3 |
|
700 |
|
40 |
200 |
Насос ГрАТ 900/67-4 |
|
900 |
|
67 |
250 |
Насос ГрАТ 1400/40-4 |
|
1400 |
|
40 |
500 |
Насос ГрАТ 1800/67-4 |
|
1800 |
|
67 |
500 |
Насос ГрАУ 2000 /63 |
|
2000 |
|
63 |
315 |
Насос 1ГрТ 4000/71 |
|
4000 |
|
71 |
1600 |
Таким образом, при расчете гидротранспортных установок выполняются следующие операции:
выбирается режим транспортирования на основании анализа трассы (вертикальное или горизонтальное транспортирование) и фракционного состава перемещаемого груза;
определяются критическая и рабочая скорости транспортирования с одновременным выбором объемной концентрации гидросмеси;
определяется или выбирается диаметр трубопровода по критической или рабочей скорости;
определяются потери напора;
подбирается грунтовый насос путем пересчета характеристик.
Показатели насосного агрегата (группы насосов) должны соответствовать необходимому расходу и напору, а высота всасывания должна обеспечивать работу насоса в нормальном режиме.
