Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
8
Добавлен:
22.08.2019
Размер:
330.24 Кб
Скачать

Крымский государственный медицинский университет им С. И. Георгиевского

Реферат по теме:

Электрические свойства биологических тканей

Студентки 113 группы 1-го курса

2-го медицинского факультета

Каретниковой Ксении

Г. Симферополь, 2011г.

1. Электропроводность тканей организма Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др.). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R).

При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L):

I = L • U или I = U / R.

Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность.

Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др.

Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков.

В межклеточной жидкости с максимальным содержанием ионов удельная электропроводность достаточно высока и составляет 1 См • м-1. Напротив, в цитозоле, содержащем органеллы и крупные белковые молекулы, она понижается до 0,003 См • м-1. Удельная электропроводность плазмолеммы и внутриклеточных мембран еще ниже (1-3) • 10-5 См • м-1. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1). Электропроводность кожи зависит от толщины состояния дериватов и содержания воды. Сухая кожа является плохим проводником электрического тока, тогда как влажная хорошо проводит его. В связи с тем, что постоянный ток распространяется по пути наименьшего сопротивления, то состояние электропроводности тканей и тесно с ней связанная поляризация существенно сказываются на происходящих в организме изменениях при гальванизации (см.), лекарственном электрофорезе (см. Электрофорез лекарственных веществ) и других электротерапевтических методах.

Значительно более сложный характер носит электропроводность клеток и тканей для переменного тока. Так как биологические объекты обладают как проводимостью, так и емкостью, то они будут характеризоваться как активным, так и реактивным сопротивлением, в сумме составляющими импеданс объекта. Импеданс биологической ткани зависит от частоты тока: при увеличении частоты реактивная составляющая импеданса уменьшается. Частотно-зависимый характер емкостного сопротивления является одной из причин зависимости импеданса биологических объектов от частоты тока, т.е. дисперсии импеданса. Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода действия переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону, больше времени релаксации какого-либо вида поляризации, то поляризация достигает своего максимального значения и вещество будет характеризоваться постоянными значениями диэлектрической проницаемости и проводимости. До тех пор, пока полупериод переменного тока больше времени релаксации, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость снова станут постоянными величинами.

При изучении частотных зависимостей сопротивления и емкости биологических объектов было обнаружено три области дисперсии: ?, ? и ?. ?-Дисперсия занимает область низких частот, примерно до 1 кГц. Ее объясняют поверхностной поляризацией клеток. По мере увеличения частоты переменного тока эффект поверхностной поляризации уменьшается, что проявляется как уменьшение диэлектрической проницаемости и сопротивления ткани. B-Дисперсия занимает более широкую область частот: 103-107 Гц. В прошлом для объяснения дисперсии диэлектрической проницаемости и сопротивления в данной области обращались к теориям дипольной и макроструктурной поляризации. В настоящее время для объяснения ?-дисперсии развивается электрохимическая (электролитическая) теория поляризации биологических объектов. Ценность данного подхода состоит в том, что он позволяет учитывать при описании электрических свойств биологических тканей клеточную проницаемость и наличие ионных потоков через мембрану.

Y-Дисперсия диэлектрической проницаемости и проводимости наблюдается на частотах выше 1000 МГц. Уменьшение диэлектрической проницаемости в данном диапазоне обусловлено ослаблением эффектов поляризации, вызываемой диполями воды.

Общая картина частотной зависимости электрических параметров сохраняется для всех тканей. Некоторые индивидуальные особенности ее определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках, содержанием свободной воды и др. Изменение состояния клеток и тканей, их возбуждение, изменение интенсивности метаболизма и других функций клеток приводит к изменению электропроводности биологических систем. В этой связи изменение электропроводности используют для получения информации о функциональном состоянии биологических тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм различных факторов, для оценки кровенаполнения сосудов органов и тканей и др.

2.Закон Ома для электролитов

Дисперсия электрических свойств тканей, обусловленная состоянием заряженных частиц, играет важную роль в действии на организм лечебных физических факторов, в особенности переменных токов, электромагнитных полей и их составляющих. Они определяют их проникающую способность, селективность и механизмы поглощения энергии факторов, первичные механизмы их действия на организм. Закон Ома в дифференциальной форме

Сопротивление   зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

где:

  •  — вектор плотности тока,

  •  — удельная проводимость,

  •  — вектор напряжённости электрического поля.

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Электрический ток в жидкостях

Как и твердые тела, жидкости могут быть диэлектриками и проводниками. Дистиллированная вода, например, — диэлектрик, а небольшое количество поваренной соли NaCl (тоже диэлектрик), добавленной в дистиллированную воду, делает ее проводником.

Объясняется это следующим образом. В дистиллированной воде концентрация свободных зарядов очень мала, поэтому она плохо проводит ток. Диэлектрическая проницаемость воды ε = 81, поэтому при растворении вещества в воде кулоновские силы взаимодействия ионов в молекуле соли уменьшаются. И энергии теплового (беспорядочного) движения частиц может хватить, чтобы молекула распалась на ионы Na+ и Cl.

  • Распад молекул вещества на ионы при растворении его в жидкости называется электролитической диссоциацией.

Теория электролитической диссоциации была разработана в 1887 году немецким ученым Р. Клаузиусом и шведским химиком С. Аррениусом.

Молекулы различных веществ диссоциируют по-разному и могут распадаться на два или больше ионов. Характер диссоциации тесно связан с химическими свойствами вещества.

Например, при растворении в воде соли сульфата меди молекула CuSO4 диссоциирует на два иона: Cu2+ и SO42-:

При отсутствии внешнего электрического поля ионы находятся в тепловом хаотическом движении.

Ионы противоположного знака при встрече вновь могут образовать нейтральную молекулу. Этот процесс называется рекомбинацией ионов (процесс, обратный диссоциации). При неизменных условиях в растворе устанавливается динамическое равновесие, когда число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Степень диссоциации α определяется отношением числа распавшихся на ионы молекул к их общему числу. Степень диссоциации зависит от температуры, концентрации раствора и диэлектрической проницаемости растворителя. Так как с ростом температуры энергия теплового движения молекул увеличивается, то при этом степень диссоциации электролита возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.

Пусть в сосуд с раствором электролита помещены два электрода, представляющие собой металлические проводники, к которым присоединяем источник ЭДС. Электрод, подключенный к положительной клемме источника, называется анод, к отрицательной клемме — катод. В сосуде возникнет электрическое поле, и отрицательные ионы (анионы) начнут двигаться к аноду, а положительные (катионы) — к катоду (рис. 1). В результате в растворе электролита установится электрический ток.

Рис. 1

Термин «ион» в переводе с греческого означает «идущий». Отсюда произошли и названия «анион» — идущий к аноду, «катион» — идущий к катоду.

  • Электрический ток в жидкостях — это направленное движение ионов обоих знаков.

Поскольку перенос заряда в электролитах осуществляется ионами, такую проводимость называют ионной.

Однако некоторые жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

  • Жидкости, которые проводят электрический ток, называются электролитами.

Для электролитов также справедлив закон Ома и закон Джоуля-Ленца.

При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны (это называется окислительной реакцией), а на катоде положительные ионы получают недостающие электроны (восстановительная реакция). Отдав или получив электроны, ионы превращаются в нейтральные атомы. Эти атомы (или образованные из них молекулы) выделяются на электродах.

Образовавшиеся атомы могут вступить в реакцию с электродами или растворителем. Химические реакции, в которые вступают нейтрализовавшиеся ионы, называются вторичными.

  • Явление выделения на электродах веществ, при прохождении электрического тока через электролит, называют электролизом.

Необходимым условием электролиза является прохождение через электролит постоянного электрического тока.