Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СМЕСИТЕЛЬНОЕ ОБОРУДОВАНИЕ.doc
Скачиваний:
54
Добавлен:
22.08.2019
Размер:
1.64 Mб
Скачать

2. Аппараты для перемешивания жидкостей.

Аппараты для перемешивания жидкостей по динамике перемешивающих органов делятся на аппараты статического и динамического принципа действия.

Статические смесители (рис. 2) представляют собой устройства с не- ­подвижными перемешивающими эле­ментами 1, встроенными в цилиндри­ческую трубу 2. Перемешивание и диспергирование жидкостей и суспен­зий осуществляется за счет использо­вания энергии потока при его многократном делении на элементарные струйки и их переориентации.

Рис.2.Схема статического смесителя.

Преимущества статических смеси­телей перед емкостной аппаратурой с пере-мешивающими устройствами и динамическими (вибрационными) смесителями, при сопоставимых результатах по качеству получаемых сме­сей, связано с низкой энерго- и метал­лоемкостью, простотой изготовления и обслуживания, компактностью и де­шевизной. Статические смесители на­ходят широкое применение при эмульгировании жидкостей.

Аппараты с мешалками. Механическое перемешивание производят в аппаратах динамического принципа действия, носящих общее название аппаратов с мешалками, В частных слу­чаях они носят названия, исходя из конкретного назначения аппа­рата (реактор, экстрактор, репульпатор, каустификатор и т. д.). Перемешивание производят с целью создания однородных раство­ров и суспензий и интенсификации процессов тепло- и массообмена (физического или в сочетании с химической реакцией). Для достижения указанных целей используют мешалки и ап­параты различных конструкций с учетом особенностей каждого конкретного процесса.

Сосуды для аппаратов с мешалками имеют цилиндрическую форму и плоское, коническое либо эллиптическое днище. Обычно их устанав­ливают вертикально. В на-стоящее время химическое машинострое­ние изготовляет 10 типов стандар-тизированных сосудов для аппа­ратов с мешалками (ГОСТ 20680-75) вместимостью от 0,01 до 100 м3 и диаметром от 273 до 3200 мм. Они могут работать под вакуумом и под давлением до 6,4 МПа. Корпуса аппаратов изго­тавливают в 22-х исполнениях. Индекс стандартного аппарата обозначают по ГОСТ 25167-82 следующим образом. Например, индекс 1110-25-0,6У-001-У2 озна­чает, что аппарат имеет эллиптическое днище и приварную эллип­тическую крышку - первая цифра (1); гладкую приварную ру­башку - вторая цифра (1); рамную мешалку (10); вместимость 25 м3; может работать под давлением 0,6 МПа; выполнен из угле­родистой стали - буква У; номер модели - 001; следующая буква У указывает климатическое исполнение, а последняя цифра (2)- ка­тегорию размещения.

Выбор и заказ стандартных аппаратов с мешалками произво­дят по каталогам.

Корпус аппарата может быть изготовлен цельносварным (рис.3,а) или со съемной крышкой (рис.3,б). На крышке аппарата располагают штуцеры для напол-нения, монтажа конт­рольно-измерительных приборов, смотровые окна и люк, служа-щий для осмотра внутренней поверхности и ремонта. По требованию монтажных условий аппараты изготовляют с боковыми лапами и нижним штуцером для опорож-нения (рис.3,б) или на стой­ках, приваренных к днищу и с трубой для передавливания (рис.3,а) сжатым воздухом или инертным газом. Аппараты последней конструкции используют обычно для периодического процесса.

Внутри корпуса аппарата могут быть смонтированы перего­родки для предот-вращения завихрения жидкости и образования воронки. Наличие отражательных перегородок в аппарате вызы­вает значительное увеличение потребляемой мешалкой мощности, но мало влияет на интенсивность массообмена. Поэтому размеще­ние их в

растворителях и кристаллизаторах считается нецелесооб­разным.

В зависимости от условий ведения технологического процесса аппараты изго-

Рис. 3. Реакторы с мешалками:

а - периодического действия с рамной мешалкой и трубой передавливания; б-непрерывного действия с пропеллерной мешалкой и диффузором. 1 - электродвигатель; 2 - редуктор; 3 - сальниковые уплотнения; 4 - люк; 5 - термометр; 6 - штуцер для подачи пара; 7 - штуцер для конденсата; 8 - опорная лапа; 9 - воздуш­ник; 10 - труба передавливания; 11 - штуцеры для подачи реагентов; 12 - сливной шту­цер; 13 - диффузор; 14 - штуцер опорожнения.

товляют с теплообменной рубашкой или без нее. Если разбавление раствора не играет существенной роли, нагрев его можно производить острым паром, подаваемым через эжектор, введенный в раствор. Использовать аппараты со змеевиками в про­изводстве кристаллических веществ нежелательно из-за быстрого их обрастания осадком и затруд-нения очистки.

При необходимости быстрого смешения двух растворов шту­церы ввода обоих рас-творов размещают в верхней части централь­ной трубы, охватывающей вал мешалки. Верхняя часть трубы вы­ступает из раствора, а нижняя подходит к пропеллерной мешалке, толкающей раствор вниз. Такая конструкция аппарата позволяет быстро смешивать концентрированные растворы, не разбавляя их прореагировавшим раствором, что важно при проведении процесса с целью получения высокодисперсного осадка (например, в произ­водствах сульфата и карбоната бария).

Быстрое снижение пересыщения (при получении крупнокри­сталлического осадка) достигается за счет разбавления исходных реагентов прореагировавшей смесью. Для этого растворы вводят в реактор через погружные штуцера до нижнего среза диффузора, в котором расположена пропеллерная мешалка, толкающая раствор вверх (рис.3, б). Имеющаяся в реакторе твердая фаза может служить затравкой для вновь кристаллизую­щегося вещества.

Хотя конструкции аппаратов с мешалками и относятся к аппа­ратам идеального смешения, в непрерывных процессах полное смешение не может быть достигнуто в оди- ночном аппарате. Кроме того, при ведении процессов массообмена (растворение, кристал­лизация и т. д.), в нем трудно обеспечить необходимое время пре­бывания твердых частиц. Поэтому аппараты смешения объединяют в многоступенчатые системы, в которых рас-твор перетекает из одного аппарата в другой самотеком. Конструктивно многосту- пенчатые системы оформляют или в виде каскада последовательно соединенных аппаратов (рис.4) или в виде горизонтального аппарата, разделенного на секции пе­регородками (рис.5).

Рис.4. Каскад аппаратов с мешалками (батарея кристаллизаторов).

Рис.5. Реакторы производства экстракционной фосфорной кислоты.

а – цилиндрический секционный экстрактор; б – прямоугольный секционный экстрактор

В аппаратах (секциях) большой вместимости для создания интенсивного перемешивания во всем объеме следует устанавли­вать несколько мешалок (рис. 5, а).

В случаях, когда выравнивание концентрации раствора по всему объему аппа-рата несущественно, но необходимо продолжи­тельное пребывание частиц (медленно оседающих) в аппарате, используют обычно аппараты с большим отношением высо-ты сосуда H к его диаметру D, снабжен­ные рамными или лопастными мешалками, создающими интен­сивную окружную циркуляцию (например, смеситель известного молока с фильтровой жидкостью содового производства или кау­стификатор первой ступени каустификации в производстве едкого натра известковым способом).

При абсорбции газов можно использовать аппараты, высота которых в несколь-ко раз превосходит диаметр, а на валу распо­ложены несколько турбинных мешалок на расстоянии 0,8D друг от друга. Такое решение дает возможность обеспечить интен-сив­ное перемешивание во всем объеме, добиться большого и точно определенного време-ни контакта, что в итоге позволяет достичь большой движущей силы процесса. Расход энергии в этом случае ниже, чем в аппарате большего диаметра с одной мешалкой. При установке на одном валу нескольких мешалок расстояние между ними не должно быть менее диаметра мешалки d и обычно не превышает 3d. Уровень жидкости над верхней мешалкой составляет (1,5 2,0) d.

Конструкция мешалки, как и тип сосуда, играют наиболее важную роль в процессе перемешивания. Так, аппарат с отража­тельными перегородками обеспечивает режим перемешивания иной, чем аппарат без перегородки, даже если в них установлена одна и та же мешалка.

В основной неорганической технологии используют пропеллер­ные, турбинные, лопастные и рамные мешалки. ГОСТ 20680-75 регламентирует 12 основных типов ме­шалок. Наиболее часто применяемые типы мешалок показаны на рис.6. .

Рис.6. Типы мешалок:

а, б – турбинные с наклонными лопатками; в - трехлопастная; г, д - турбинные с пря­мыми лопастями; е - лопастная; ж-u - рамные.

В наиболее общем случае их можно разделить на быстроходные и тихоходные. К быстроходным относят пропеллерные и турбинные мешалки схема работы которых показана на рис.7. Эти мешалки в зависимости от формы лопастей и способа их уста­новки могут создавать радиальный, осевой и радиально-осевой по­токи жидкости.

Быстроходные мешалки обычно работают в аппа­ратах с отражательными пере-городками. Отсутствие перегородок приводит к завихрению жидкости и образованию воронки (рис. 7,в). При этом жидкость плохо перемешивается, снижается турбулент­ность потока и полезный объем аппарата. Число перегородок в аппаратах составляет обычно четыре, а их ширина - В 0,1D. В случае жидкостей, имеющих вязкость, близкую к вяз- кости воды, перегородки располагают у самой стенки аппаратов. Для жидкостей с повы-

шенной вязкостью ( > 7 Па·с) такое расположение перегородок приводит к образо-ванию застой­ных зон вокруг перегородок, поэтому в этом случае их распола­гают на не-котором расстоянии (0,2 0,5)В от стенки аппарата. Роль перегородок, предот-вращающих образование воронок, могут исполнять стойки змеевиков, гильзы термо-метров, погруженные патрубки наполнения и т. д.

К тихоходным относят лопастные и рамные мешалки. Они соз­дают в основном окружной поток жидкости.

Рис. 7. Схема работы турбинной и пропеллерной мешалок:

а - турбинная, аппарат с перегородками; б - пропеллерная, аппарат с перегородками; в­ – пропеллерная, аппарат без перегородок.

Например, смеситель содового производства и каустификаторы 1 ступени в произ-водстве едкого натра снаб­жены рамными мешалками, а сборники и напорные баки из-вест­кового молока - лопастными; пропеллерные мешалки применяют в реакторах и вакуум-кристаллизаторах производства соединений бария, экстракторы фосфорной кислоты оборудованы турбинными мешалками.

Вибросмесители осуществляют перемешивание жидких сред турбулентными струями, возникающими при осевом движении диска (рис. 8) в перемешиваемой среде [5]. Схема конструкции вибросмесителя показана на рис. 8. В корпусе вибро-смесителя помещен перфорированный диск, укрепленный на штоке и совершающий колебания посредством вибровозбудителя. Последний изолирован от опорной конс-трукции при помощи упругой подвески. Для перемешивания пульп диск устанав-ливают на небольшом рас­стоянии от дна аппарата колебательном движении перфори-рованного (0,3 0,5 длины струи, определяемой опытным путем) для размыва образу-ющегося на дне осадка из наиболее тяжелых частиц пульпы. Конус перфорации при этом направлен большим основанием вниз. Оптимальный угол раство­ра конуса составляет 970. Диаметр диска обычно не превышает 700 ­800 мм, при больших диаметрах необходимы конструктивные решения, повышающие жесткость диска. Диаметр штока в современных аппаратах ограничивается размером око­ло 70 100 мм, его длина - 4,5 м. Герметизация крышки ап­парата, через которую проходит шток, обеспечивается диафраг­мами из листовой резины. В химической промышленности используют вибросмесители с объемом аппаратов 0,2 3 м3.

Рис.8. Вибросмеситель для перемешивания жидкостей: 1- корпус; 2 - перфорированный диск; 3 - шток; 4 - вибровозбудитель; 5- упругая подвеска.

Корпус аппарата изготавли-вают из стали, для агрессивных сред - из нержавеющей. Внутрен-няя поверхность может быть футе-рована кислотоупорным кирпи-чом, свинцом или резиной. Дно аппарата для перемешивания жид-костей и легких пульп делают плоским или сферическим, для тяжелых пульп - кони­ческим. В качестве материала штока для уменьшения массы колеблю-щихся частей целесообразно при-менение титана. Число дисков на штоке и число штоков зависит от размеров аппарата.

В качестве привода вибро-смесителей используют электро­магнитные и дебалансные вибро-возбудители, причем примене­ние первых предпочтительнее из-за большего ресурса работы, возмож-

ности управления амплитудой колебаний и лучшей уравновешенности системы