- •Contents
- •Передмова
- •We are students at donetsk national university
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words
- •Student Dima Loboda
- •Student Dasha Klimova
- •Student Nastya Savchuk
- •Student profile
- •L earn mathematics in English Cardinal and ordinal numbers
- •1. Read the text about two arithmetical operations and do the exercises that follow it Basic arithmetical operations. (Addition & subtraction)
- •What’s your best friend like?
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words
- •Who’s their ideal partner?
- •L earn mathematics in English
- •1. Read the text and do the exercises below it Basic arithmetical operations (Multiplication & division)
- •A day in the life of a student
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words
- •I. Look through the text and do the tasks
- •Learn mathematics in English
- •I. Read the text and do the exercises below it. Advanced arithmetical operations
- •What’s your university like?
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words:
- •Donetsk national university
- •The University of Sheffield
- •1. Find a partner from the other group. Tell each other the information you read about one of the universities
- •Fractions
- •The city I live and study in
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words:
- •Learn mathematics in English
- •Mixed numbers
- •Mathematics is the queen of scienses
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •Key words:
- •“`A mathematician is a machine for converting coffee into theorems”. /Paul Erdos/
- •L earn mathematics in English
- •Equivalent fractions
- •Reciprocals and the "invisible denominator"
- •The language of mathematics
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •Key words
- •L earn mathematics in English
- •Statistics is very serious!
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •Key words:
- •Statistics is very serious!
- •Get to know a typical computer
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words:
- •Get to know a typical computer
- •Computer without a program is just a heap of metal!
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary.
- •2. Key words
- •We can’t imagine modern computing without them
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary
- •2. Key words
- •I. Read the following texts and do the tasks Alan Turing
- •Tim Berners-Lee
- •He has left mathematicians enough to keep them busy for five hundred years
- •Vocabulary
- •1. Guess the meaning of these international words. Check with your teacher or a dictionary.
- •2. Key words
- •I. Read the text and do the tasks niels henric abel
- •Getting to know each other better
- •II. Swap charts with b. Ask a to explain the information in his/her chart. Ask for more information
- •III. Explain your answers to b
- •Mood graph
- •A time for everything
- •Expert opinion
- •Vocabulary
- •Vocabulary
- •What’s your body age?
- •I. Read the questionnaire and answer the questions below, adding or subtracting the numbers after your answer from your actual age
- •How many friends can you share problems with?
- •15. Have you taken antibiotics in the past five years?
- •II. Check your score
- •If you're younger than your years
- •I. Look at your partner’s answers. Ask for more information, for example: What is your worst diet habit? How much time do you have for yourself?
- •II. Some ways to lower our body age are given below. Read it and give your partner some good advice starting with the following words: I think you should…
- •Donetsk national university
- •Inspires students’ enthusiasm for learning
- •An ideal teacher
- •Is a well-educated person has a good sense of humor is a polite and a punctual person delivers interesting lectures
- •Numbers
- •I. Mind–map’ numbers’. When you read this ‘mind-map’, you’ll meet words that are new to you. First try to guess their meaning and then look them up in a dictionary.
- •II. Answering and explaining
- •III. Playing a trick with numbers
- •IV. The ‘Terribly Stressed‘ game
- •I. Use this mind-map ‘Four basic operations in Mathematics’ as a topic activator to speak about the basic operations in Arithmetic
- •III. Reading, writing and saying numerical expressions
- •3. Look at each numerical expression written in symbols and signs. Then say it in words. Your partner will listen to see if you repeat correctly and correct your incorrect answers
- •I. Use this mind-map ‘Algebra’ as a topic activator to speak about Algebra (its origin and some facts from its history)
- •II. Match each numerical expression in the left column with the equivalent expression in the right column
- •Look at the expressions written in words and write them in mathematical notation (in symbols)
- •III. Read the following inequalities aloud. Your partner will check your answers
- •I. Mind-map ‘Geometry’. Use this map to speak about geometry (its meaning, the history of its development, its application). Add more information you know
- •II. Working with geometric terms. Demonstrate your knowledge of geometric terms. Work in pairs (a/b)
- •The language of mathematics
- •Practice set 12
- •III. Draw your mood graph or graph with your marks showing changes during the week or a month (semester). Explain it to your partner
- •Some facts from the history of mathematics education
- •I. Read the article and mark the sentences t (true), f (false) or ng (not given)
- •Do you know that…
- •II. Search for some information about one of these mathematics teachers and share it with other students. Make a table of the most important facts of his/her biography
- •Ancient sources of information
- •I. Choose from (a-j) the one which best fits each of (1-7). There are two choices you do not need to use.
- •II. Tell your partner about these famous papyri
- •III. Find some information about Mathematics of ancient civilizations and share it with other students (e.G. The Maya calendar, the ancient numeration systems)
- •The history of the symbols for plus and minus
- •I. Read the article. Guess the meaning of the highlighted words. Check with the teacher or your dictionary
- •II. Read the article again. Say what events the following years refer to:
- •III. Tick (√) the things the article says
- •IV. Read the facts listed below. In pairs, discuss which one is the most surprising do you know that...
- •V. Find some information on the history of the mathematical symbols. Give a presentation to the students of your group
- •Statistics
- •I. Match the words with their definitions:
- •II. Decide if the given statements are true (t) or false (f) according to the text
- •III. Search for information about one of the scientists listed below and then give a presentation
- •Important contributors to statistics
- •Degrees and diplomas in statistics
- •III. Do you know anything about awards in Statistics in your country or abroad?
- •Why is there no nobel prize in mathematics?
- •I. Read the text. Seven sentences have been removed from it. Choose from the choices (a- I) the one which fits each gap (1-7). There are two choices you do not need to use
- •III. Work in pairs. Tell your partner why Nobel decided against a Nobel Prize in mathematics
- •Major awards in mathematics
- •The obverse of the Fields Medal
- •The reverse of the Fields Medal
- •A. Fields medal
- •III. Look at these words. Why are they important in this text?
- •B. Abel prize
- •IV. Focus on these words. Why are they important in the text?
- •VI. Compare the major awards in Mathematics with the Nobel Prize by using like (similar to) or unlike (different from) in the sentences
- •V. Search for more information on the following topics on the Internet and share it with other students
- •Abel Prize Laureates
- •Fields medalist
- •I. Decide if the given statement is true (t) according to the text, if it is false (f) or if the information is not given (ng) in the text (Work in pairs)
- •II. Number these events in the order they happened. Look at the Reading
- •III. Interview your partner about this great mathematician (Work in pairs)
- •IV. Ask and answer the following questions in pairs
- •II. Match the number with its symbolic meaning:
- •III. Answer the questions below and then ask for more information (Work in pairs)
- •Do you know that…
- •IV. Find information on the Internet and give a presentation of the number you are interested in (brings you good or bad luck)
- •Text 10
- •Reading and Speaking
- •Number and reality
- •I. Match the word with its meaning:
- •II. Work in pairs. Decide if the sentences 1- 7 are t (true) or f (false)
- •A strong mathematical component
- •I. Choose from (a-j) the one which best fits each of (1-6). There is one choice you do not need to use
- •II. Match choices (a-d) to (1-4)
- •III. In pairs, find and then say what events the following years refer to:
- •IV. Do you know an artist (a writer) having a strong mathematical component in his/her creative work? Search for information on the Internet and give a presentation on the subject
- •Reading and Speaking fractal
- •I. Match the words with their meanings:
- •II. Choose from (a-f) the one which best fits each of (1-5). There is one choice you do not need to use
- •III. Work in pairs. Tell your partner about fractal
- •IV. On the Internet search for information about applications of fractals and then share your information with other students
- •Healthy computer work
- •Match the words with their meanings:
- •I I. Read the article once and then decide if the following guidelines are true, false or are not mentioned in the text above
- •III. Team work. Work out the main rules for operating the computer. The winner is to give clear recommendations for young people working on the computer. The first one is given for you
- •IV. Ask and answer the questions (Work in pairs)
- •Computers can do wonders
- •I. Match the words with their meanings
- •II. Decide if the following statements are true or false (t/f) by referring to the information in the text
- •III. Work in pairs. Tell your partner about the most surprising facts from the article
- •IV. Search for information about ‘computer wonders’ on the Internet and give a presentation about new computer developments (e.G. Robots)
- •Watching ‘how did mathematics begin? (a cartoon)
- •I. Answer the following questions:
- •II. Tell the class about the most interesting facts you have learned from the cartoon. Do you agree with the information mentioned in the cartoon? Add more information about the development of numbers
- •Recommendations and some useful phrases for giving presentations
- •Introduction
- •Introducing your subject
- •If you make a mistake, start your sentence again.
- •If you can’t remember a word, use another one.
- •Conclusion
- •Inviting questions
- •Questions
- •Wording mathematical signs, symbols and formulae
- •Answer keys
- •References
II. Match the number with its symbolic meaning:
1 |
|
A |
symbolizes human life and—in the Platonic and Pythagorean traditions—marriage |
2 |
|
B |
is considered ‘perfect’ |
3 |
|
C |
is the number of order in the universe |
4 |
|
D |
is generally treated as a symbol of unity |
5 |
|
E |
is often considered lucky |
6 |
|
F |
symbolizes many of the basic dualities |
7 |
|
G |
is a very mystical and spiritual number featured in many folktales |
III. Answer the questions below and then ask for more information (Work in pairs)
A
Who didn’t consider 1 to be a number at all?
What number associates with negatives? Why?
What number is the dimension of the smallest magic square in which every row, column, and diagonal equals fifteen?
What numbers are considered to be perfect in Mathematics? Why?
What does the number 7 determine in China?
B
In what country is the number 4 considered to be unlucky?
Why was the number 5 important to the Maya?
Why is a knot tied in the form of the pentagram called a lover’s knot in England?
What number leads to a few years of bad luck, if you break a mirror?
What did students pursue in medieval education?
Do you know that…
The number 8 is generally considered to be an auspicious number by numerologists. The square of any odd number, less one, is always a multiple of 8 (for example, 9 − 1 = 8, 25 − 1 = 8 × 3, 49 − 1 = 8 × 6), a fact that can be proved mathematically.
The early inhabitants of Wales used nine steps to measure distance in legal contexts; for example, a dog that has bitten someone can be killed if it is nine steps away from its owner’s house, and nine people assaulting one constituted a genuine attack.
The number 20 has little mystical significance, but it is historically interesting because the Mayan number system used base 20. When counting time the Maya replaced 20 × 20 = 400 by 20 × 18 = 360 to approximate the number of days in the year. Many old units of measurement involve 20 (a score)—for example, 20 shillings to the pound in pre-decimal British money system.
IV. Find information on the Internet and give a presentation of the number you are interested in (brings you good or bad luck)
Text 10
Reading and Speaking
Number and reality
Many aspects of the natural world display strong numerical patterns, and these may have been the source of some number mysticism. For example, crystals can have rotational symmetries that are twofold, threefold, fourfold, and sixfold but not fivefold − a curious exception that was recognized empirically by the ancient Greeks and proved mathematically in the 19th century.
An especially significant number is the golden ratio, usually symbolized by the Greek letter ϕ. It goes back to early Greek mathematics under the name “extreme and mean ratio” and refers to a division of a line segment in such a manner that the ratio of the whole to the larger part is the same as that of the larger part to the smaller. This ratio is precisely (1 + √5)/2, or approximately 1.618034. The popular name golden ratio, or golden number, appears to have been introduced by the German mathematician Martin Ohm in Die reine Elementarmathematik (1835; “Pure Elementary Mathematics”). If not, the term is not much older and certainly does not go back to ancient Greece as is often claimed.
In art and architecture the golden number is often said to be associated with elegance of proportion; some claim that it was used by the Greeks in the design of the Parthenon. There is little evidence for these claims. Any building has so many different lengths that some ratios are bound to be close to the golden number or for that matter to any other ratio that is not too large or small. The golden number is also often cited in connection with the shell of the nautilus, but this too is a misunderstanding. The nautilus shell has a beautiful mathematical form, a so-called logarithmic (or equiangular) spiral. In such a spiral each successive turn is magnified in size by a fixed amount. There is a logarithmic spiral associated with the golden number, and in this case the fixed amount is precisely ϕ. However, the spiral of the nautilus does not have the ratio ϕ. Logarithmic spirals exist with any given number as their ratio, and the nautilus ratio has no special significance in mathematics.
The golden number is, however, legitimately associated with plants. This connection involves the Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…), in which each number, starting with 2, is the sum of the previous two numbers. These numbers were first discussed in 1202 by the Italian mathematician Leonardo Pisano, who seems to have been given the nickname Fibonacci (son of Bonaccio) in the 19th century. The ratio of successive Fibonacci numbers, such as 34/21 or 55/34, gets closer and closer to ϕ as the size of the numbers increases. As a result, Fibonacci numbers and ϕ enjoy an intimate mathematical connection.
Fibonacci numbers are very common in the plant kingdom. Many flowers have 3, 5, 8, 13, 21, or 34 petals. Other numbers occur less commonly; typically they are twice a Fibonacci number, or they belong to the “anomalous series” 1, 3, 4, 7, 11, 18, 29… with the same rule of formation as the Fibonacci numbers but different initial values. Moreover, Fibonacci numbers occur in the seed heads of sunflowers and daisies. These are arranged as two families of interpenetrating spirals, and they typically contain, say, 55 clockwise spirals and 89 counterclockwise ones or some other pair of Fibonacci numbers.
This numerology is genuine, and it is related to the growth pattern of the plants. As the growing tip sprouts, new primordial− clumps of cells that will become special features such as seeds− arise along a generative spiral at successive multiples of a fixed angle. This angle is the one that produces the closest packing of primordial; and for sound mathematical reasons it is the golden angle: a fraction (1 − 1/ ϕ) of a full circle, or roughly 137.5 degrees.
