
- •Содержание:
- •Глава 1. Строение и свойства материалов…………………………………….……………3
- •Глава 2. Свойства материалов……………………………………………………………...10
- •Глава 1. Строение и свойства материалов.
- •1.2.3. Анизотропия
- •1.3.4 Металлические кристаллы
- •1.4. Фазовый состав сплавов
- •1.4.1. Твердые растворы
- •1.4.2. Промежуточные фазы
- •1.5 Дефекты кристаллов
- •1.5.1 Точечные дефекты
- •1.5.2. Линейные дефекты
- •1.5.3. Поверхностные дефекты
- •Глава 2. Свойства материалов.
- •2.2. Механические свойства материалов
- •2.2.1. Механические свойства, определяемые при статических нагрузках
- •Глава 3. Формирование структуры литых материалов.
- •3.1 Самопроизвольная кристаллизация
- •3.2. Несамопроизвольная кристаллизация
- •3.3 Форма кристаллов и строение слитков
- •3.4. Получение монокристаллов
- •3.5 Аморфные металлы
- •3.6. Нанокристаллические материалы
- •Глава 5. Формирование структуры деформированных металлов
- •5.1. Пластическое деформирование моно- и поликристаллов
- •5.1.1. Механизм пластического деформирования
- •5.1.2. Особенности деформирования монокристаллов
- •5.1.3. Деформирование поликристаллов
- •5.1.4. Деформирование двухфазных сплавов
- •5.1.5. Свойства холоднодеформированных металлов
- •5.2 Возврат и рекристаллизация
- •Глава 6. Термическая обработка сплавов.
- •6.1 Виды термической обработки
- •Глава 9. Стали, обеспечивающие жесткость, статическую и циклическую прочность.
- •9.1. Классификация конструкционных сталей
1.4. Фазовый состав сплавов
Термин «сплав» в настоящее время имеет более широкое значение, чем во время его появления. Если раньше промышленные материалы, содержащие несколько элементов, получали преимущественно путем сплавления, то сейчас для этого используют различные технологические способы: порошковую металлургию (прессование твердых частиц и их последующее спекание при высоких температурах), диффузионный метод (проникновение одного вещества в другое твердое вещество при высоких температурах), плазменное напыление, кристаллизацию из паров в вакууме, электролиз и т.д. Преимущественное использование в промышленности находят сплавы металлов с металлами или неметаллами. В сплавах элементы могут по-разному взаимодействовать между собой, образуя различные по химическому составу, типу связи и строению кристаллические фазы. Фазой называется однородная, отделенная поверхностью раздела часть металла или сплава, имеющая одинаковые состав, строение и свойства. В зависимости от атомно-кристаллической структуры различают твердые растворы и промежуточные фазы. Твердыми растворами называются кристаллы, в которых сохраняется тип кристаллической решетки элемента-растворителя. В промежуточных фазах образуется новый тип кристаллической решетки, отличающийся от решеток элементов, его образующих.
Таким образом, помимо классификации кристаллов по видам связи используют классификацию по типам кристаллической решетки, которая позволяет прогнозировать характер изменения свойств сплава в зависимости от химического состава.
1.4.1. Твердые растворы
Твердые растворы являются кристаллическими фазами переменного состава. Атомы растворенного элемента В размещаются в кристаллической решетке растворителя — элемента А, замещая атомы в узлах решетки или внедряясь между узлами. В первом случае кристаллы называют твердыми растворами замещения, во втором — твердыми растворами внедрения. Количество замещенных атомов, так же как и количество внедренных, может изменяться в широких пределах, что и приводит к переменной растворимости твердых растворов.
Твердые растворы обозначаются буквами греческого алфавита: альфа, бетта, гамма и т.д. или А(В), где А — растворитель, В — растворенный элемент.
Твердые растворы замещения. Замещение атомов растворителя А атомами растворенного элемента В возможно, если атомные радиусы отличаются не более, чем на 15 %. Это условие называют размерный фактор. В твердых растворах атомы растворенного вещества, как правило, распределяются в решетке растворителя статистически. Вокруг атома растворенного вещества возникают местные искажения пространственной решетки, которые приводят к изменению свойств и среднего периода решетки. Растворение элементов с меньшим атомным радиусом, чем атомный радиус растворителя, вызывает уменьшение среднего периода решетки, а с большим — его увеличение.
Образование твердых растворов всегда сопровождается увеличением электрического сопротивления и уменьшением температурного коэффициента электрического сопротивления; твердые растворы обычно мене-епластичны (исключение составляют твердые растворы на основе меди) и всегда более твердые и прочные, чем чистые металлы.
Растворимость элементов в твердом состоянии уменьшается при увеличении различия в атомных радиусах сплавленных элементов и их валентности.
При образовании твердых растворов замещения возможна и неограниченная растворимость элементов в твердом состоянии, т.е. когда при любом количественном соотношении сплавляемых элементов все разнородные атомы размещаются в узлах общей пространственной решетки.
Неограниченная растворимость наблюдается при соблюдении размерного фактора и если элементы имеют одинаковый тип кристаллической решетки. Неограниченная растворимость в твердом состоянии наблюдается в сплавах Cu-Au, Cu-Ni, Ge-Si. В полиморфных металлах встречается неограниченная растворимость в пределах одной модификации пространственной решетки. Например, Fe(альфа) дает неограниченный ряд твердых растворов с хромом (ОЦК решетки), a Fe(гамма) — неограниченный ряд твердых растворов с никелем (ГЦК решетки).
Многие твердые растворы замещения при относительно невысоких температурах способны находиться в упорядоченном состоянии, т.е. вместо статистического распределения разносортных атомов в узлах пространственной решетки атомы одного и другого металла размещаются в совершенно определенном порядке. Такие твердые растворы называются упорядоченными1.
Переход из неупорядоченного в упорядоченное состояние происходит при определенной температуре или в определенном интервале температур. Температура, при которой твердый раствор полностью разупорядо-чивается, называется точкой Курнакова и обозначается (тетта)К. Упорядочение происходит обычно только при медленном охлаждении твердого раствора из температурной области выше (тетта)К.
Упорядоченные твердые растворы встречаются в системах с значительной или неограниченной растворимостью в твердом состоянии; при этом полная упорядоченность возникает при концентрациях твердого раствора, соответствующих простым атомным соотношениям компонентов типа АВ или АВ3 Частичная упорядоченность наблюдается при составах, близких к указанным. Расположение атомов в упорядоченных твердых растворах двух сплавов меди с золотом, составов, соответствующих концентрациям АиСиз и AuCu.
Возникновение и исчезновение порядка в расположении атомов твердых растворов сопровождается изменением свойств. При упорядочении возрастают электропроводность, температурный коэффициент электрического сопротивления, твердость и прочность; снижается пластичность сплава. У ферромагнитных сплавов изменяются магнитные свойства: например, у пермаллоев (магнитные сплавы железа с никелем) при упорядочении в несколько раз уменьшается магнитная проницаемость. Некоторые сплавы в неупорядоченном состоянии парамагнитны, а после упорядочения становятся ферромагнитными, например сплавы Гейслера (Mn-Cu-А1).
Твердые растворы внедрения. Такие твердые растворы возникают при сплавлении переходных металлов с неметаллами, имеющими малый атомный радиус — водородом, азотом, углеродом, бором.
Основным условием, определяющим возможность растворения путем внедрения, является размерный фактор. Размер межузельного атома должен быть несколько больше размера поры.
Твердые растворы внедрения всегда имеют ограниченную растворимость и встречаются преимущественно тогда, когда растворитель имеет ГП или ГЦК решетки, в которых имеются поры с радиусом 0,41R, где R — радиус атома растворителя. В ОЦК решетке растворимость путем внедрения мала, так как размер пор не превосходит 0,29R.
Примером твердых растворов внедрения, имеющих промышленное значение, являются твердые растворы углерода в Fe(гамма) и Fe(альфа). Так, Fe(гамма) с ГЦК решеткой растворяет до 2,14 % (мас.) углерода, a Fe(альфа) с ОЦК решеткой почти совсем его не растворяет (максимальная растворимость составляет около 0,02 % (мас.)).
Искажения решетки при образовании твердых растворов внедрения больше, чем при образовании твердых растворов замещения, поэтому у них более резко изменяются и свойства. По мере увеличения концентрации растворенного элемента в твердом растворе заметно возрастают электрическое сопротивление, твердость и прочность, но и значительно понижаются пластичность и вязкость.
В сплавах, содержащих более двух элементов, возможно растворение в одном и том же растворителе и путем замещения, и путем внедрения. Так, при сплавлении железа с марганцем и углеродом получится твердый раствор, в котором марганец растворяется путем замещения, а углерод — путем внедрения.
В заключение следует подчеркнуть, что твердые растворы — это кристаллы, наиболее близкие по свойствам к растворителю, так как сохраняют его кристаллическую решетку и тип связи. В частности, твердые растворы на основе металлов отличаются высокой технологической пластичностью: хорошо деформируются в горячем, а многие и в холодном состоянии.
Твердые растворы составляют основу большинства промышленных конструкционных сплавов и сплавов специального назначения.