
- •Физический практикум оптика
- •Введение
- •Лабораторный оптический комплекс лко-3п
- •Функциональные модули
- •Набор объектов
- •Настройка установки
- •1.2. Прохождение света через плоскопараллельную пластинку.
- •1.3. Преломление света в призме.
- •1.4. Принцип Ферма.
- •Порядок выполнения работы Задание 1. Преобразование пучка света линзами
- •Эксперимент
- •Задание 2. Определение показателя преломления пластины
- •Эксперимент
- •Задание 3. Определение показателя преломления призмы
- •Эксперимент
- •Контрольные вопросы
- •Порядок выполнения работы Задание 1. Калибровка микропроектора
- •Задание 2. Определение фокусного расстояния объектива
- •Задание 3. Определение фокусного расстояния и увеличения объектива с помощью калибровочной сетки.
- •Контрольные вопросы
- •Порядок выполнения работы
- •Эксперимент
- •Задание 2. Интенсивность в сферической волне
- •Эксперимент
- •Контрольные вопросы
- •Изучение интерференции световых волн с помощью щелей Юнга
- •Краткая теория
- •4.1. Интерференция света: общие сведения.
- •4.2. Опыт Юнга.
- •Задание 1. Изучение интерференции. Эксперимент
- •Задание 2. Измерение длины волны лазерного излучения. Эксперимент
- •Контрольные вопросы
- •Контрольные вопросы
- •Дифракция Френеля
- •Краткая теория
- •6.1. Геометрическая оптика и дифракция.
- •Угол дифракции
- •Длина дифракции
- •Дифракция Френеля и дифракция Фраунгофера
- •6.2. Дифракция Френеля.
- •6.3. Дифракция Френеля на круглом отверстии и диске.
- •Порядок выполнения работы Задание 1. Наблюдение дифракции Френеля на диске.
- •Эксперимент
- •Задание 2. Дифракция Френеля на круглом отверстии. Зоны Френеля.
- •Эксперимент
- •Контрольные вопросы
- •Дифракция Фраунгофера
- •Краткая теория
- •7.1. Дифракция Фраунгофера на одной щели.
- •7.2. Дифракция Фраунгофера на дифракционной решетке.
- •Порядок выполнения работы Задание 1. Дифракция Фраунгофера на щели Эксперимент
- •Задание 2. Дифракция Фраунгофера на одномерной дифракционной решетке
- •Контрольные вопросы
- •Изучение поляризации света. Экспериментальная проверка закона Малюса.
- •Краткая теория
- •1. Плоская или линейная поляризация.
- •Порядок выполнения работы
- •Задание 1. Определение степени поляризации излучения лазера.
- •Задание 2 Экспериментальная проверка закона Малюса
- •Задание 3. Определение коэффициентов пропускания неидеального поляризатора.
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №9 Экспериментальная проверка закона Брюстера
- •Краткая теория
- •1. Вектор лежит в плоскости падения электромагнитной волны.
- •2. Вектор перпендикулярен к плоскости падения волны.
- •Порядок выполнения работы
- •Эксперимент
- •1. Установка оборудования.
- •2. Калибровка установки.
- •3. Измерения.
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №10 Изучение явления вращения плоскости поляризации света
- •Краткая теория
- •Порядок выполнения работы
- •Эксперимент Задание 1. Определение степени поляризации излучения лазера.
- •Задание 2. Измерение концентрации сахара в растворе.
- •Контрольные вопросы
- •Литература
- •Содержание
Порядок выполнения работы
Для экспериментального определения угла Брюстера пользуются тем, что при некотором значении угла падения от границы раздела двух диэлектриков отразится только электромагнитная волна с такой поляризацией, в которой колебания вектора параллельны плоскости падения. В нашем эксперименте это горизонтальная плоскость, т. е. нужно добиться чтобы вектор колебался именно в этой плоскости падения. Так как плоскость колебаний вектора параллельна оси рукоятки излучателя, с помощью которой лазер поворачивается вокруг оптической оси, то нужно установить ее в горизонтальное положение, тем самым вектор становится максимально поляризованным в горизонтальной плоскости, а чтобы добиться полной поляризации вектора в этой плоскости, устанавливают за излучателем поляризатор, плоскость поляризации которого также должна быть горизонтальной (рис. 9.6).
Рис. 9.6. Схема установки. Колебания вектора в плоскости падения условно обозначены стрелками, колебания, перпендикулярные плоскости пдания – точками.
Так как при прохождении через поляризатор свет полностью поляризуется, то при вращении пластинки в горизонтальной плоскости на экране можно заметить, что при некотором значении угла поворота интенсивность света должна быть минимальной. Такое значение угла поворота и есть угол Брюстера, т. е. свет практически не отражается, а точнее отражается лишь та часть свет, в котором колебания вектора не параллельны плоскости падения (горизонтальная плоскость), т. к. поляризатор неидеальный. Найденный угол и будет являться углом Брюстера.
Эксперимент
1. Установка оборудования.
Для проведения работы, необходимо установить на оптической скамье модуль 12, представляющий собой поляризатор с нониусом, модуль 13 – стол поворотный, в который установлена плоскопараллельная пластинка (объект 4)) последовательно друг за другом.
2. Калибровка установки.
После установки приборов необходимо произвести калибровку установки. Сначала при помощи ручки 1 (рис. ) поворотного стола устанавливают его на нулевую угловую координату, рычаг 4 поворачивают до совпадения его вертикальной риски с нулевым делением основной шкалы.
Затем двумя передними винтами 6 и двумя задними винтами 2 излучателя (рис. ) добиваются совпадение падающего и отраженного света (отраженный свет должен попасть в трубку излучателя).
Так определяется положение нормали к пластинке.
3. Измерения.
Задание 1.
1. Добейтесь максимальной поляризации света в горизонтальной плоскости. Для этого установите рукоятку 4 излучателя и рукоятку поляризатора в горизонтальное положение так, чтобы нулевая координата оси поляризатора была напротив риски нониуса.
2. После этого при помощи ручки 1 поворотного стола вращайте объект 4 по часовой стрелке и наблюдайте за поведением интенсивности отраженного от пластинки пучка.
3. При некотором значении угла поворота – должен наблюдаться выраженный минимум коэффициента отражения, т. е. интенсивность света должна быть минимальной. Данное значение угла поворота и есть угол Брюстера.
4.
Вычислите по формуле
коэффициент преломления исследуемого
объекта.
5. Повторите опыт еще 4 раза при других положениях модулей 12 и 13.
6. Выполните аналогичные измерения, заменив объект 4 объектом 5.
7. Результаты для каждого объекта поместите в отдельной таблице:
объект № … |
№ измерения |
Бр, º |
|
|
|
|
, % |
1 |
|
|
|
|
|
|
|
2 |
|
|
|
||||
3 |
|
|
|
||||
4 |
|
|
|
||||
5 |
|
|
|
8. Окончательный результат для каждого объекта представьте в виде:
, …%
Задание 2.
1. Вставьте в поворотный стол один из исследованных объектов (объект 4 или 5) и установите поворотный стол в начальное положение (нулевая координата).
2. Добейтесь максимальной поляризации света в вертикальной плоскости. Для этого установите рукоятку 4 излучателя и рукоятку поляризатора в вертикальное положение.
3. После этого при помощи ручки 1 поворотного стола вращайте объект 4(5) по часовой стрелке и наблюдайте за поведением интенсивности отраженного от пластинки пучка. Вы заметите, что интенсивность света при любых значениях угла поворота практически одинакова, даже в окрестности угла Брюстера для исследуемого объекта.
4. Объясните отсутствие зависимости интенсивности отраженного от пластинки луча от угла падения.
Сделайте вывод о проделанной работе.