
- •Физический практикум оптика
- •Введение
- •Лабораторный оптический комплекс лко-3п
- •Функциональные модули
- •Набор объектов
- •Настройка установки
- •1.2. Прохождение света через плоскопараллельную пластинку.
- •1.3. Преломление света в призме.
- •1.4. Принцип Ферма.
- •Порядок выполнения работы Задание 1. Преобразование пучка света линзами
- •Эксперимент
- •Задание 2. Определение показателя преломления пластины
- •Эксперимент
- •Задание 3. Определение показателя преломления призмы
- •Эксперимент
- •Контрольные вопросы
- •Порядок выполнения работы Задание 1. Калибровка микропроектора
- •Задание 2. Определение фокусного расстояния объектива
- •Задание 3. Определение фокусного расстояния и увеличения объектива с помощью калибровочной сетки.
- •Контрольные вопросы
- •Порядок выполнения работы
- •Эксперимент
- •Задание 2. Интенсивность в сферической волне
- •Эксперимент
- •Контрольные вопросы
- •Изучение интерференции световых волн с помощью щелей Юнга
- •Краткая теория
- •4.1. Интерференция света: общие сведения.
- •4.2. Опыт Юнга.
- •Задание 1. Изучение интерференции. Эксперимент
- •Задание 2. Измерение длины волны лазерного излучения. Эксперимент
- •Контрольные вопросы
- •Контрольные вопросы
- •Дифракция Френеля
- •Краткая теория
- •6.1. Геометрическая оптика и дифракция.
- •Угол дифракции
- •Длина дифракции
- •Дифракция Френеля и дифракция Фраунгофера
- •6.2. Дифракция Френеля.
- •6.3. Дифракция Френеля на круглом отверстии и диске.
- •Порядок выполнения работы Задание 1. Наблюдение дифракции Френеля на диске.
- •Эксперимент
- •Задание 2. Дифракция Френеля на круглом отверстии. Зоны Френеля.
- •Эксперимент
- •Контрольные вопросы
- •Дифракция Фраунгофера
- •Краткая теория
- •7.1. Дифракция Фраунгофера на одной щели.
- •7.2. Дифракция Фраунгофера на дифракционной решетке.
- •Порядок выполнения работы Задание 1. Дифракция Фраунгофера на щели Эксперимент
- •Задание 2. Дифракция Фраунгофера на одномерной дифракционной решетке
- •Контрольные вопросы
- •Изучение поляризации света. Экспериментальная проверка закона Малюса.
- •Краткая теория
- •1. Плоская или линейная поляризация.
- •Порядок выполнения работы
- •Задание 1. Определение степени поляризации излучения лазера.
- •Задание 2 Экспериментальная проверка закона Малюса
- •Задание 3. Определение коэффициентов пропускания неидеального поляризатора.
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №9 Экспериментальная проверка закона Брюстера
- •Краткая теория
- •1. Вектор лежит в плоскости падения электромагнитной волны.
- •2. Вектор перпендикулярен к плоскости падения волны.
- •Порядок выполнения работы
- •Эксперимент
- •1. Установка оборудования.
- •2. Калибровка установки.
- •3. Измерения.
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №10 Изучение явления вращения плоскости поляризации света
- •Краткая теория
- •Порядок выполнения работы
- •Эксперимент Задание 1. Определение степени поляризации излучения лазера.
- •Задание 2. Измерение концентрации сахара в растворе.
- •Контрольные вопросы
- •Литература
- •Содержание
Дифракция Френеля и дифракция Фраунгофера
Если
,
то наблюдается наиболее сложный для
анализа вид дифракции, называемый
дифракцией Френеля. Если
,
то распределение интенсивности на
экране Э2 и его расчет упрощаются. Лучи,
идущие от экрана Э1 в произвольную точку
Р экрана Э2, почти параллельны, а приходящие
в точку Р волны – плоские. Такой вид
дифракции называют дифракцией Фраунгофера
(дифракция в параллельных лучах или
дифракция плоских волн).
Область за экраном Э1 можно разбить на три участка:
1)
,
- область геометрической оптики;
2)
,
- дифракция Френеля (ближняя зона
дифракции);
3)
,
- дифракция Фраунгофера (дальняя зона
дифракции).
6.2. Дифракция Френеля.
Рассмотрим подробнее дифракцию в ближней зоне.
В основе объяснения дифракционных явлений лежит принцип Гюйгенса – Френеля: световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции (наложения) когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии – такая же, как при отсутствии экрана.
При рассмотрении дифракционных явлений используется понятие зон Френеля. Из рисунка 6.2, видно, что расстояние bm от внешнего края m-й зоны до точки наблюдения равно:
, (6.7)
где b – расстояние от вершины волновой поверхности О до точки наблюдения. Так как колебания от соседних зон проходят до точки Р расстояния, отличающиеся на λ/2, то в точку Р они приходят в противоположной фазе, и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке Р
(6.8)
где А1, А2, … - амплитуды колебаний, возбуждаемых 1-й, 2-й, …, m-й зонами.
Рис. 6.2.
Рис. 6.3.
Для оценки амплитуд колебаний найдем площади зон Френеля. Внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис.6.3). Обозначим площадь сегмента через Sm. Тогда площадь m-й зоны можно представить в виде:
, (6.9)
где Sm-1 – площадь сферического сегмента, выделяемого внешней границей (m-1)-й зоны. Из рисунка 6.3 следует, что
. (6.10)
После
элементарных преобразований, учитывая,
что
и
,
из (6.10) получим высоту сферического
сегмента:
. (6.11)
Площадь сферического сегмента:
. (6.12)
Площадь m-й зоны:
. (6.13)
Выражение (6.13) не зависит от m, следовательно, при не слишком больших m площади зон Френеля одинаковы. Таким образом, построение зон Френеля разбивает волновую поверхность сферической волны на равные зоны.
Согласно предположению Френеля, действие отдельных зон в точке Р тем меньше, чем больше угол между нормалью к поверхности зоны и направлением от зоны на Р, т.е. действие зон постепенно убывает от центральной (около точки О) к периферическим. Кроме того, интенсивность излучения в направлении точки Р уменьшается с ростом m и вследствие увеличения расстояния от зоны до точки Р. Учитывая оба этих фатора, можно записать
А1 > A2 > A3 > …. (6.14)
Общее число зон Френеля, умещающихся на полусфере, очень велико, поэтому в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.
. (6.15)
Тогда выражение (6.8) можно записать в виде
, (6.16)
так
как выражения, стоящие в скобках, согласно
(6.15), равны нулю, а оставшаяся часть от
амплитуды последней зоны
ничтожно мала.
Таким образом, амплитуда результирующих колебаний в произвольной точке Р определяется как бы действием только половины центральной зоны.
Если
в выражении (6.10) положим, что высота
сегмента
(при не слишком больших m),
тогда
.
Подставив сюда значение высоты
сферического сегмента (6.11), найдем радиус
внешней границы m-й
зоны Френеля:
. (6.17)
Рис. 6.4.
При величинах a и b порядка метров радиус центральной зоны Френеля, рассчитанный по формуле (6.17) будет иметь порядок миллиметров.