
- •Предисловие
- •Лекция 1 Элементы геометрической оптики.
- •Основные законы геометрической оптики.
- •Тонкие линзы. Изображение предметов с помощью собирающей линзы.
- •Лекция 2 Волновая оптика
- •Интерференция света.
- •Получение когерентных источников. Оптическая разность хода.
- •Расчет интерференции в опыте Юнга.
- •Лекция 3. Интерференция света
- •Интерференция в тонких пленках
- •2. Кольца Ньютона
- •3. Применение интерференции
- •Лекция 4. Дифракция света
- •Принцип Гюйгенса – Френеля.
- •Дифракция Френеля на круглом отверстии.
- •Дифракция Френеля на небольшом диске.
- •Лекция 5 Дифракция Фраунгофера
- •Дифракция от одной прямоугольной щели
- •Дифракционная решетка
- •Голография
- •Лекция 6 Поляризация света
- •Естественный и поляризованный свет
- •Поляризация света при отражении. Закон Брюстера.
- •Явление двойного лучепреломления и его особенности. Дихроизм.
- •Природа двойного лучепреломления.
- •Применение поляризованного света.
- •Лекция 7 Распространение света в веществе
- •Дисперсия света.
- •Поглощение света.
- •Рассеяние света.
- •Лекция 8 Тепловое излучение
- •Характеристики теплового излучения.
- •2. Поглощательная и отражательная способности тел.
- •3. 3Аконы теплового излучения.
- •4. Оптическая пирометрия
- •Лекция 9 Фотоэффект
- •Законы внешнего фотоэффекта
- •Уравнение Эйнштейна для фотоэффекта
- •Фотон и его свойства
- •Эффект Комптона
- •Люминесценция, фотолюминесценция и ее основные закономерности
- •Физические принципы устройства приборов ночного видения
- •Лекция 10 Теория атома водорода по Бору
- •Линейчатый спектр атома водорода
- •Модели атома Томсона и Резерфорда
- •Постулаты Бора
- •Спектр атома водорода по Бору
- •Лекция 11 Элементы квантовой механики
- •Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля.
- •Природа волн де Бройля
- •Соотношение неопределенностей Гейзенберга
- •Уравнение Шредингера. Волновая функция.
- •Физический смысл волновой функции
- •Лекция 12 Атом водорода в квантовой механике
- •Уравнение Шредингера для атома водорода
- •Квантовые числа.
- •Спин электрона.
- •Лекция 13 Оптические квантовые генераторы
- •Физические основы работы окг. Спонтанное и индуцированное излучение.
- •Термодинамическое равновесие. Нормальная населенность уровней.
- •Неравновесное состояние. Инверсия населенности уровней.
- •Рубиновый лазер
- •Газовый лазер
- •Лекция 14 Атомное ядро и основы ядерной энергетики
- •Состав и характеристики ядра
- •Энергия связи и дефект масс
- •Ядерные силы
- •Радиоактивность
- •Лекция 15
- •Реакция деления тяжелых ядер
- •Цепная реакция деления
- •Управляемая цепная реакция. Ядерные реакторы.
- •Термоядерная реакция синтеза легких ядер
- •Принципиальная схема устройства термоядерной бомбы
- •Проблемы управления термоядерной реакцией
- •Лекция 16 Элементарные частицы
- •Космические лучи
- •Элементарные частицы
- •Основные свойства.
- •Характеристики элементарных частиц.
- •Мюоны и их свойства.
- •Мезоны и их свойства.
- •Частицы и античастицы
- •Классификация элементарных частиц. Кварки.
Линейчатый спектр атома водорода
Во второй половине 19 века было проведено детальное исследование спектров газов и паров металлов. Оказалось, что изолированные атомы разряженного газа, паров металлов имеют линейчатые спектры. Спектры состоят из отдельных линий расположенных не беспорядочно. Лини объединяются в группы и серии.
В 1885 году швейцарский физик и математик Бальмер, изучая видимую часть спектра водорода, показал, что длины волн ее удовлетворяют формуле (формула Бальмера):
,
где
3,
4, 5…,
Здесь
- постоянная Ридберга.
Так как
,
то формула Бальмера может быть переписана
для частот:
,
где
.
Совокупность длин волн, удовлетворяющих формуле Бальмера, называется серией Бальмера. Дальнейшие исследования показали, что в спектре водорода есть несколько серий:
Серия Лаймана:
,
2,
3, 4,…, которая находится в ультрафиолетовой
области спектра.
Серия Бальмера: , где 3, 4, 5… - в видимой области спектра.
В инфракрасной области спектра были обнаружены:
Серия Пашена:
,
где
4,
5,6 …
Серия Брекета:
,
где
5,
6, 7…
Серия Пфунда:
,
где
6,
7, 8…
Серия Хэмфри:
,
где
7,
8, 9…
Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой, называемой обобщенной формулой Бальмера:
,
где
имеет в каждой серии постоянное значение:
1,
2, 3,…,
принимает целочисленные значения,
начиная с
и определяет отдельные линии этой серии:
,
,
…,
.
Значение
определяет границу серии.
Приведенные выше формулы подобраны эмпирически и долгое время не имели теоретического обоснования.
Модели атома Томсона и Резерфорда
Для объяснения спектров атомов были предложены различные модели атомов.
В 1903 году английский физик Томсон предложил модель атома, представляющую собой непрерывно заряженный положительный шар радиусом м, в которую вкраплены электроны. Суммарный отрицательный заряд, равен положительному заряду шара и поэтому атом нейтрален.
Однако, в 1911 году английский физик
Резерфорд своими опытами по рассеянию
-
частиц опровергает утверждение Томсона
о непрерывном распределении положительного
заряда внутри шара. В своем опыте
Резерфорд обнаружил, что при прохождении
-
частиц через золотую фольгу толщиной
1мкм основная их часть испытывает
незначительные отклонения, но некоторые
-
частицы (примерно одна из 20000) отклоняются
на углы равные
.
На основании этих исследований Резерфорд
предложил планетарную модель атома.
Согласно этой модели в центре атома
находится положительно заряженное
ядро, имеющие размеры
м.
Вокруг ядра по орбитам вращаются
электроны. Число электронов равно заряду
ядра.
Столкновение с ядром - частиц происходят крайне редко из-за его малых размеров. Но планетарная модель оказалась в противоречии с законами классической механики и электродинамики:
Вращающийся электрон имеет заряд, движется он ускоренно и поэтому должен излучать. Излучая энергию, он приближается к ядру по спирали. Расчеты показывают, что он упадет на ядро через с. То есть атом Резерфорда не устойчив.
По мере приближения к ядру радиус траектории электрона убывает. Момент инерции его
убывает. Но по закону сохранения момента импульса
. Так как непрерывно убывает, должно расти. Поэтому спектр излучения должен быть сплошным, а не линейчатым.
Таким образом, планетарная модель атома не могла объяснить ни устойчивость атома, ни характер спектра.