- •Материал для теоретического изучения дисциплины. Тема 1. «вводная лекция»
- •1.1.Содержание и задачи курса.
- •Тема 2. «структурный анализ механизмов»
- •2.1.Звенья и кинематические пары механизмов.
- •2.2.Кинематические цепи. Степень подвижности механизмов
- •Тема 3. «классификация передаточных механизмов»
- •3.1.Шарнирно-рычажные механизмы.
- •3.2.Фрикционные механизмы
- •3.2.1.Общие сведения
- •3.2.2.Упругое скольжение
- •3.2.3.Геометрическое скольжение
- •3.2.4.Кинематика фрикционных механизмов
- •3.2.5. Расчет фрикционных передач
- •3.3.Зубчатые механизмы
- •3.3.1.Общие сведения
- •3.3.2.Параметры цилиндрических прямозубых колес
- •3.3.3.Кинематика многоступенчатых передач с неподвижными осями.
- •3.3.4.Передаточное отношение многоступенчатых передач
- •3.4.Кинематика винтовых механизмов
- •3.5.Механизмы с гибкими звеньями.
- •Тема 4. «основы точности механизмов»
- •4.1. Ошибки механизмов и их деталей
- •4.2. Точность деталей и их соединений
- •4.2.1. Допуски линейных размеров
- •4.2.2. Посадки деталей
- •4.2.3. Шероховатость поверхности
- •4.2.4. Отклонения формы и расположения поверхностей
- •Тема 5. «основы расчетов звеньев механизмов на прочность и жесткость»
- •5.1. Деформации и напряжения. Метод сечений
- •5.2. Простейшие типы деформации стержней
- •5.3. Допущения, принимаемые при расчетах на прочность
- •5.4. Определение деформаций и напряжений при растяжении-сжатии
- •5.5. Определение механических свойств материалов. Диаграмма напряжений
- •5.6. Твердость материалов
- •5.7. Допускаемые напряжения. Условия прочности и жесткости конструкций
- •5.8. Напряжения в наклонных сечениях растянутых стержней
- •5.9. Закон парности касательных напряжений
- •5.10. Деформация сдвига
- •5.10.1. Напряжения и деформации при сдвиге
- •5.10.2. Расчет на сдвиг заклепочных (болтовых) соединений
- •5.11. Геометрические характеристики плоских сечений
- •5.11.1. Статические моменты сечения. Центр масс сечения
- •5.11.2. Моменты инерции сечений
- •5.11.3. Моменты инерции прямоугольника, круга
- •5.12. Кручение стержней с круглым поперечным сечением
- •5.12.1. Понятие о крутящем моменте
- •5.12.2. Определение напряжений при кручении стержней с круглым поперечным сечением
- •5.12.3. Определение деформаций при кручении стержней с круглым поперечным сечением
- •5.13. Изгиб прямолинейного стержня
- •5.13.1. Общие понятия о деформации изгиба
- •5.13.2. Определение опорных реакций изгибаемых стержней
- •5.13.3. Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
- •5.13.3. Определение деформаций при изгибе
- •5.14. Сложные деформации
- •5.14.1. Понятие о теориях прочности
- •5.14.2. Изгиб с кручением стержней круглого поперечного сечения
- •5.15. Местные напряжения
- •5.15.1. Концентрация напряжений
- •5.15.2. Контактные напряжения
- •5.16. Устойчивость сжатых стержней
- •5.16.1. Устойчивость равновесия сжатого стержня
- •5.16.2. Определение критической силы, задача Эйлера
- •5.17. Прочность при циклически изменяющихся нагрузках (напряжениях)
- •5.17.1. Понятие об усталости материалов
- •5.17.2. Характеристики усталостной прочности материалов. Предел выносливости
- •5.17.3. Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений
- •5.17.4. Факторы, влияющие на предел выносливости
- •Тема 6. «Конструкционные материалы»
- •6.1. Требования к конструкционным материалам
- •6.2. Черные металлы
- •6.2.1. Чугуны
- •6.2.2. Стали
- •6.3. Цветные металлы и сплавы
- •6.3.1. Медь и ее сплавы
- •6.3.2. Алюминий и его сплавы
- •6.4. Пластмассы
- •6.5. Виды термической и химико-термической обработки стали
- •Тема 7. «Типовые Соединения деталей»
- •7.1. Разъемные соединения
- •7.1.1. Резьбовые соединения
- •7.1.2. Штифтовые соединения
- •7.1.3. Шпоночные соединения
- •7.1.4. Шлицевые соединения
- •7.1.5. Профильные соединения
- •7.2. Неразъемные соединения
- •7.2.1. Сварные соединения
- •7.2.2. Соединения пайкой
- •7.2.3. Заклепочные соединения
- •7.2.4. Клеевые соединения
- •7.2.5. Соединения заформовкой и запрессовкой
- •Тема 8. «Валы и оси»
- •8.1. Назначение, конструкции и материалы валов и осей
- •8.2. Расчет валов и осей
- •Тема 9. «опоры»
- •9.1. Подшипники скольжения
- •9.2. Подшипники качения
- •9.2.1. Классификация и устройство подшипников
- •9.2.2. Выбор подшипников качения
- •9.2.3. Посадки подшипников. Конструкции подшипниковых узлов
- •9.3. Специальные опоры
- •Тема 10. «Упругие элементы»
- •10.1. Назначение, классификация, основные свойства и материалы упругих элементов
- •10.2. Винтовые пружины
- •10.3. Плоские пружины
- •10.4. Мембраны, сильфоны и трубчатые пружины
- •10.5. Амортизаторы
- •Тема 11. «корпуса и несущие конструкции»
- •11.1. Корпуса
- •11.2. Несущие конструкции
- •Тема 12. «Муфты»
- •12.1. Назначение и классификация
- •12.2. Постоянные муфты
- •12.3. Управляемые муфты
- •12.4. Самоуправляемые муфты
- •Тема 13. «Зубчатые механизмы».
- •1 3.1. Параметры цилиндрических косозубых колес
- •13.2. Конструкции и материалы зубчатых колес
- •13.3. Конические зубчатые передачи
- •13.4. Червячные передачи
3.3.2.Параметры цилиндрических прямозубых колес
Рассмотрим элементы зубчатых колес (рис. 3.6), находящихся в зацеплении, в плоскости, перпендикулярной к оси вращения. По высоте снаружи зубья ограничены окружностью выступов диаметром da, изнутри – окружностью впадин диаметром df. Боковые поверхности полного профиля зуба очерчены эвольвентами противоположных ветвей. Эвольвента представляет собой траекторию произвольной точки прямой, перекатывающейся без скольжения по окружности, называемой основной. Положительная ветвь эвольвенты получается при перекатывании производящей прямой против хода часовой стрелки, отрицательная – по ходу часовой стрелки. С увеличением радиуса основной окружности до бесконечности (зубчатая рейка) эвольвента превратится в прямую. Часть бокового профиля зуба очерчивается по переходной кривой, служащей плавным переходом от эвольвенты к окружности впадин. Наличие переходной кривой делает зуб более прочным у основания. При зацеплении одного колеса с другим появляется начальная окружность радиусом rw. Это окружность одного зубчатого колеса, перекатывающаяся без скольжения по окружности (поверхности) второго из зацепляющихся колес. Расстояние между одноименными профилями соседних зубьев по дуге окружности называется окружным шагом и обозначается pt. Значение этого параметра по начальным окружностям должно быть одинаковым у находящихся в зацеплении колес. Пользуясь шагом зацепления, можно выразить длину любой окружности колеса, умножив шаг на число зубьев z:
ptz = πdt, (3.17)
где t – индекс соответствующей окружности, например, pa, da или pf, df.
Рис. 3.6
Величина pt выражается несоизмеримым числом, так как в правую часть условия (3.17) входит число π. Это затрудняет выбор размеров колес при их проектировании и изготовлении. Поэтому основным параметром принят не шаг, а отношение его к числу π. Эта величина называется модулем зацепления mt:
mt = pt/π. |мм| (3.18)
Шаг и модуль имеют индекс той окружности, по которой они измерены. Величины модулей для снижения номенклатуры и унификации режущего и контролирующего инструмента стандартизированы. Чаще всего согласно стандартам ограничиваются следующими значениями модуля (в миллиметрах): 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,20; 0,25; 0,3; 0,5; 0,6; 0,8; 1,0; 1,25; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0. Окружность, по которой модуль имеет расчетное стандартное значение, называется делительной. Диаметр ее обозначается d, она является базовой для определения элементов зубьев и их размеров. Шаг и модуль по делительной окружности обозначают соответственно р и m.
Диаметр делительной окружности
d = mz. (3.19)
Для наиболее распространенных неисправленных по высоте (нулевых) колес начальная и делительные окружности совпадают и передаточное отношение для пары таких колес будет равно
i12
= ω1/ω2
=
=
d2/d1
= z2/z1 . (3.20)
Помимо шага по дуге окружности различают и угловой шаг (центральный угол, соответствующий шагу по дуге). За время контакта одной пары зубьев колесо повернется на угол перекрытия. Для обеспечения непрерывности передачи движения от ведущего к ведомому колесу необходимо, чтобы до выхода из контакта данной пары зубьев в зацепление вступила очередная пара зубьев. Это условие будет соблюдаться, если угловой шаг колеса меньше угла перекрытия. Отношение угла перекрытия к угловому шагу, называют коэффициентом перекрытия зубчатой передачи εγ. Допустимым считается значение εγ ≥ 1,2.
Часть зуба высотой ha, заключенную между окружностью выступов и делительной окружностью, называют головкой зуба, а часть зуба высотой hf, заключенную между делительной окружностью и окружностью впадин, – ножкой зуба. Основные геометрические параметры зубчатого колеса – диаметры выступов da и впадин df, общая высота зуба h, высота головки ha и ножки hf, толщина зуба s и ширина впадин е между зубьями – выражаются через основной параметр зубчатой передачи – модуль m, по ГОСТ 9587-68.
Зубчатые передачи в приборостроении обычно используют не как силовые для передачи значительных моментов сил, а как кинематические для получения требуемых скоростей вращения. Зубчатую передачу в этом случае не рассчитывают на прочность, модуль выбирают из стандартного ряда по конструктивным соображениям. Применение малых модулей позволяет уменьшить габариты колес и увеличить плавность передачи при сохранении габаритов за счет увеличения числа зубьев. При заданном диаметре стоимость колес с уменьшением модуля возрастает, но повышается точность работы зубчатой пары, КПД таких передач 0,94 ... 0,98.
Высота головки зуба ha = ha*∙m, где ha* – коэффициент высоты головки, который в соответствии со стандартом равен единице (ha* = 1), а высота головки равна модулю (ha = m). Высота ножки зуба hf = (ha* + c*)m, где с = с*m – величина радиального зазора (см. рис. 3.7) между зубьями колес, находящихся в зацеплении; с* – коэффициент радиального зазора, который зависит от величины модуля: с* = 0,5 при m ≤ 0,5 мм, с* = 0,35 при 0,5 < m < 1 мм и с* = 0,25 при m ≥ 1 мм. Высота зуба h = ha + hf = m(2 + c*). Диаметры окружности выступов и впадин равны соответственно da = d + 2ha = m(z + 2) и df = d – 2hf = m(z – 2 – 2c*). Ширину зубчатого венца b принимают равной 2 … 6 модулям. Окружная толщина s зуба по делительной окружности s = p/2 = πm/2. Боковой
зазор в зубчатом зацеплении устанавливается в зависимости от принятого вида сопряжения колес.
Траектория точек контакта пары зубьев во время зацепления у эвольвентных колес называется линией зацепления. Она является общей нормалью к боковым профилям зубьев. Угол между линией зацепления и перпендикуляром к межосевому расстоянию называют углом зацепления α, обычно α = 20°. При изменении межосевого расстояния линия зацепления изменяет свое положение. Изменяется угол зацепления, но передаточное отношение не нарушается.
Ч
Рис. 3.7
и коэффициенте высоты головки ha* = 1 равно 17 (zmin = = 17), а при α = 15° – zmin =30. При изготовлении зубчатых колес иногда применяют зубья укороченной высоты с коэффициентом высоты головки ha* = 0,8. Это позволяет получить без подреза меньшее число зубьев на шестернях. Так при α = 20° и ha* = 0,8 минимально допустимое число зубьев zmin = 14.
