
- •Материал для теоретического изучения дисциплины. Тема 1. «вводная лекция»
- •1.1.Содержание и задачи курса.
- •Тема 2. «структурный анализ механизмов»
- •2.1.Звенья и кинематические пары механизмов.
- •2.2.Кинематические цепи. Степень подвижности механизмов
- •Тема 3. «классификация передаточных механизмов»
- •3.1.Шарнирно-рычажные механизмы.
- •3.2.Фрикционные механизмы
- •3.2.1.Общие сведения
- •3.2.2.Упругое скольжение
- •3.2.3.Геометрическое скольжение
- •3.2.4.Кинематика фрикционных механизмов
- •3.2.5. Расчет фрикционных передач
- •3.3.Зубчатые механизмы
- •3.3.1.Общие сведения
- •3.3.2.Параметры цилиндрических прямозубых колес
- •3.3.3.Кинематика многоступенчатых передач с неподвижными осями.
- •3.3.4.Передаточное отношение многоступенчатых передач
- •3.4.Кинематика винтовых механизмов
- •3.5.Механизмы с гибкими звеньями.
- •Тема 4. «основы точности механизмов»
- •4.1. Ошибки механизмов и их деталей
- •4.2. Точность деталей и их соединений
- •4.2.1. Допуски линейных размеров
- •4.2.2. Посадки деталей
- •4.2.3. Шероховатость поверхности
- •4.2.4. Отклонения формы и расположения поверхностей
- •Тема 5. «основы расчетов звеньев механизмов на прочность и жесткость»
- •5.1. Деформации и напряжения. Метод сечений
- •5.2. Простейшие типы деформации стержней
- •5.3. Допущения, принимаемые при расчетах на прочность
- •5.4. Определение деформаций и напряжений при растяжении-сжатии
- •5.5. Определение механических свойств материалов. Диаграмма напряжений
- •5.6. Твердость материалов
- •5.7. Допускаемые напряжения. Условия прочности и жесткости конструкций
- •5.8. Напряжения в наклонных сечениях растянутых стержней
- •5.9. Закон парности касательных напряжений
- •5.10. Деформация сдвига
- •5.10.1. Напряжения и деформации при сдвиге
- •5.10.2. Расчет на сдвиг заклепочных (болтовых) соединений
- •5.11. Геометрические характеристики плоских сечений
- •5.11.1. Статические моменты сечения. Центр масс сечения
- •5.11.2. Моменты инерции сечений
- •5.11.3. Моменты инерции прямоугольника, круга
- •5.12. Кручение стержней с круглым поперечным сечением
- •5.12.1. Понятие о крутящем моменте
- •5.12.2. Определение напряжений при кручении стержней с круглым поперечным сечением
- •5.12.3. Определение деформаций при кручении стержней с круглым поперечным сечением
- •5.13. Изгиб прямолинейного стержня
- •5.13.1. Общие понятия о деформации изгиба
- •5.13.2. Определение опорных реакций изгибаемых стержней
- •5.13.3. Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
- •5.13.3. Определение деформаций при изгибе
- •5.14. Сложные деформации
- •5.14.1. Понятие о теориях прочности
- •5.14.2. Изгиб с кручением стержней круглого поперечного сечения
- •5.15. Местные напряжения
- •5.15.1. Концентрация напряжений
- •5.15.2. Контактные напряжения
- •5.16. Устойчивость сжатых стержней
- •5.16.1. Устойчивость равновесия сжатого стержня
- •5.16.2. Определение критической силы, задача Эйлера
- •5.17. Прочность при циклически изменяющихся нагрузках (напряжениях)
- •5.17.1. Понятие об усталости материалов
- •5.17.2. Характеристики усталостной прочности материалов. Предел выносливости
- •5.17.3. Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений
- •5.17.4. Факторы, влияющие на предел выносливости
- •Тема 6. «Конструкционные материалы»
- •6.1. Требования к конструкционным материалам
- •6.2. Черные металлы
- •6.2.1. Чугуны
- •6.2.2. Стали
- •6.3. Цветные металлы и сплавы
- •6.3.1. Медь и ее сплавы
- •6.3.2. Алюминий и его сплавы
- •6.4. Пластмассы
- •6.5. Виды термической и химико-термической обработки стали
- •Тема 7. «Типовые Соединения деталей»
- •7.1. Разъемные соединения
- •7.1.1. Резьбовые соединения
- •7.1.2. Штифтовые соединения
- •7.1.3. Шпоночные соединения
- •7.1.4. Шлицевые соединения
- •7.1.5. Профильные соединения
- •7.2. Неразъемные соединения
- •7.2.1. Сварные соединения
- •7.2.2. Соединения пайкой
- •7.2.3. Заклепочные соединения
- •7.2.4. Клеевые соединения
- •7.2.5. Соединения заформовкой и запрессовкой
- •Тема 8. «Валы и оси»
- •8.1. Назначение, конструкции и материалы валов и осей
- •8.2. Расчет валов и осей
- •Тема 9. «опоры»
- •9.1. Подшипники скольжения
- •9.2. Подшипники качения
- •9.2.1. Классификация и устройство подшипников
- •9.2.2. Выбор подшипников качения
- •9.2.3. Посадки подшипников. Конструкции подшипниковых узлов
- •9.3. Специальные опоры
- •Тема 10. «Упругие элементы»
- •10.1. Назначение, классификация, основные свойства и материалы упругих элементов
- •10.2. Винтовые пружины
- •10.3. Плоские пружины
- •10.4. Мембраны, сильфоны и трубчатые пружины
- •10.5. Амортизаторы
- •Тема 11. «корпуса и несущие конструкции»
- •11.1. Корпуса
- •11.2. Несущие конструкции
- •Тема 12. «Муфты»
- •12.1. Назначение и классификация
- •12.2. Постоянные муфты
- •12.3. Управляемые муфты
- •12.4. Самоуправляемые муфты
- •Тема 13. «Зубчатые механизмы».
- •1 3.1. Параметры цилиндрических косозубых колес
- •13.2. Конструкции и материалы зубчатых колес
- •13.3. Конические зубчатые передачи
- •13.4. Червячные передачи
Тема 9. «опоры»
Опорами называют устройства, поддерживающие вращающиеся валы и оси в требуемом положении. Они воспринимают и передают нагрузки от подвижных звеньев на корпус или плату. Точность и надежность механизма во многом определяются конструкцией опор.
В зависимости от направления нагрузок опоры делят на: радиальные подшипники, воспринимающие радиальные нагрузки; подпятники или упорные подшипники, воспринимающие осевые нагрузки; радиально-упорные подшипники, воспринимающие одновременно радиальные и осевые нагрузки.
В зависимости от вида трения между соприкасающимися поверхностями валов и опор различают: опоры с трением скольжения; опоры с трением качения и специальные опоры (электромагнитные, опоры с трением упругости и другие).
Основными требованиями, предъявляемыми к опорам механизмов, являются: малые потери на трение, большая точность направления движения, износостойкость, малые габариты, простота сборки, надежность при различных условиях работы, низкая стоимость.
9.1. Подшипники скольжения
Опоры механизмов должны обеспечить наибольшую точность перемещения, минимальные потери на трение, быть надежными в работе, сохранять возможность вращения при изменении температуры рабочей среды, виброустойчивы. Опоры скольжения появились значительно раньше опор качения. В зависимости от формы рабочей поверхности опоры скольжения выполняют цилиндрическими, коническими и сферическими. Наибольшее распространение получили цилиндрические опоры. Их простейшим видом может быть отверстие (рис. 9.1, а) под цапфу непосредственно в корпусе либо в другой детали, поддерживающей вал или ось. Если материал детали, поддерживающей вал или ось, не обладает хорошими антифрикционными свойствами, легко подвергается износу, в него запрессовывают втулки, конструкции которых показаны на рис. 9.1. Они могут воспринимать радиальные (рис. 9.1, а, б), радиальные и осевые нагрузки (рис. 9.1, в, г), регулировать осевое смещение вала (рис. 9.1, г).
Материал втулки должен быть износостойким, хорошо прирабатываться и иметь в паре с материалом цапфы минимальный коэффициент трения. Для стальных цапф этим условиям удовлетворяют: при высоких давлениях и малых окружных скоростях – бронза БрАЖ9-4 и латунь ЛС59-1; при высоких давлениях и скоростях – бронза БрОФ10-1 и БрОЦС-5-5-5; при небольших давлениях и скоростях – металлокерамические материалы, имеющие пористую структуру и хорошо удерживающие смазку; различные пластмассы – текстолит, фторопласт и др.
б
в
г
а
Рис 9.1
К достоинствам пластмасс помимо самосмазываемости необходимо отнести большие демпфирующие способности при действии вибраций и ударов, диэлектричность, антикоррозийность, технологичность изготовления, небольшую массу и стоимость. Недостатками пластмассовых опор скольжения прежде всего являются невысокая износостойкость, низкая теплопроводность, гигроскопичность и нестабильность размеров.
Цилиндрические опоры в отличие от конических мало чувствительны к изменению температуры из-за наличия зазоров между цапфой и подшипником, наиболее просты по конструкции. Конические опоры могут воспринимать как радиальную, так и осевую нагрузку, более сложны и дороже, имеют большие потери на трение. Сферические или шаровые опоры применяют, если при эксплуатации и сборке может иметь место перекос оси вала по отношению к оси подшипника.
Опоры скольжения имеют следующие достоинства: малые радиальные размеры, допускают высокие частоты вращения, возможность работы в воде и агрессивных средах, устойчивы к вибрациям и ударам. К недостаткам их следует отнести: большие потери на трение и небольшой КПД, сравнительно большие осевые размеры, неравномерный износ подшипника и цапфы, необходимость использования дорогостоящих антифрикционных материалов и смазки.
Подшипники скольжения различают с сухим, граничным и жидкостным трением. Сухое трение имеет место при отсутствии смазки между контактирующими поверхностями. Для уменьшения трения применяются различные виды покрытий металлических вкладышей подшипника – сульфидирование, сульфационирование, нанесение пленок свинца, галлия, палладия, фторопласта, порошка графита, двусернистого молибдена, нитрата бора.
В подшипниках жидкостного трения трущиеся поверхности полностью разделены слоем жидкой смазки или газа. Различают гидростатические и гидродинамические подшипники. В гидро- и аэростатических подшипниках разделение трущихся поверхностей достигают путем подачи в зону контакта жидкости или газа под давлением, уравновешивающем вал. В гидро- и аэродинамических подшипниках цапфа вала располагается во втулке подшипника с зазором. При движении жидкая или газообразная (воздух) смазка увлекается в клиновидный зазор за счет прилипания к поверхности цапфы, разделяет поверхности трения и при определенной скорости вращения создает давление, уравновешивающее внешнюю нагрузку (цапфа всплывает).
Наиболее часто применяются подшипники скольжения с граничным трением, когда слой жидкости не полностью разделяет трущиеся поверхности и имеет место частичный контакт между цапфой и втулкой. При жидкостном и граничном условиях работы применяются жидкие минеральные и консистентные (густые) смазки.
Часто конструкции опор предусматривают подвод смазки и наличие специальных канавок для подачи смазки на трущиеся поверхности. Широко используют подшипники, вкладыши которых изготовлены методами порошковой металлургии из порошков соответствующих сплавов. Смазочная жидкость, заполнившая при пропитке поры такого вкладыша, обеспечивает смазку подшипника на все время его работы.
Основными видами разрушения подшипников скольжения являются износ, задиры и контактные усталостные повреждения поверхности втулки (выкрашивание в виде раковин или отслаивание, шелушение материалов).
Расчет цилиндрических подшипников, не работающих в условиях жидкостного трения, сводится к определению диаметра цапфы (d) и ее длины (ℓ) из условий ограничения среднего давления (q) на втулку (9.1); нагрева и износа (9.2), пропорционального удельной работе трения (qv):
q = Fr/dℓ qadm , (9.1)
qv (qv)adm , (9.2)
v
=
,
(9.3)
где Fr – радиальная нагрузка на опору, Н; v – окружная скорость вала, м/с; d и ℓ – диаметр и длина рабочих поверхностей опоры, мм; n – частота вращения вала, об/мин; qadm , (qv)adm – допускаемые значения соответственно удельного давления и удельной работы трения материала втулки. Их значения для ряда материалов при стальных цапфах приведены в табл. 9.1.
Таблица 9.1
Значения qadm , (qv)adm при стальных цапфах
Наименование материала втулки подшипника |
qadm , МПа |
(qv)adm , МПа∙м/с |
Бронза Бр АЖ 9-4 |
15 |
12 |
Бронза Бр ОЦС 5-5-5 |
8 |
12 |
Капрон |
5 |
10 |
Текстолит |
12 |
30 |
Для сопряжения цилиндрических цапф с втулкой при граничном трении назначаются посадки с зазором в системе отверстия. Величина зазора тем больше, чем выше окружная скорость. При высоких скоростях рекомендуют посадки H8/e7; при средних и малых скоростях – H7/e7, H7/f7, H7/g7; при малых скоростях и высокой точности сопряжения – H7/g6, H6/g5. Для уменьшения трения и износа шероховатость трущихся поверхностей рекомендуют принимать в пределах Ra = (1,25 … 0,32) мкм.