- •Материал для теоретического изучения дисциплины. Тема 1. «вводная лекция»
- •1.1.Содержание и задачи курса.
- •Тема 2. «структурный анализ механизмов»
- •2.1.Звенья и кинематические пары механизмов.
- •2.2.Кинематические цепи. Степень подвижности механизмов
- •Тема 3. «классификация передаточных механизмов»
- •3.1.Шарнирно-рычажные механизмы.
- •3.2.Фрикционные механизмы
- •3.2.1.Общие сведения
- •3.2.2.Упругое скольжение
- •3.2.3.Геометрическое скольжение
- •3.2.4.Кинематика фрикционных механизмов
- •3.2.5. Расчет фрикционных передач
- •3.3.Зубчатые механизмы
- •3.3.1.Общие сведения
- •3.3.2.Параметры цилиндрических прямозубых колес
- •3.3.3.Кинематика многоступенчатых передач с неподвижными осями.
- •3.3.4.Передаточное отношение многоступенчатых передач
- •3.4.Кинематика винтовых механизмов
- •3.5.Механизмы с гибкими звеньями.
- •Тема 4. «основы точности механизмов»
- •4.1. Ошибки механизмов и их деталей
- •4.2. Точность деталей и их соединений
- •4.2.1. Допуски линейных размеров
- •4.2.2. Посадки деталей
- •4.2.3. Шероховатость поверхности
- •4.2.4. Отклонения формы и расположения поверхностей
- •Тема 5. «основы расчетов звеньев механизмов на прочность и жесткость»
- •5.1. Деформации и напряжения. Метод сечений
- •5.2. Простейшие типы деформации стержней
- •5.3. Допущения, принимаемые при расчетах на прочность
- •5.4. Определение деформаций и напряжений при растяжении-сжатии
- •5.5. Определение механических свойств материалов. Диаграмма напряжений
- •5.6. Твердость материалов
- •5.7. Допускаемые напряжения. Условия прочности и жесткости конструкций
- •5.8. Напряжения в наклонных сечениях растянутых стержней
- •5.9. Закон парности касательных напряжений
- •5.10. Деформация сдвига
- •5.10.1. Напряжения и деформации при сдвиге
- •5.10.2. Расчет на сдвиг заклепочных (болтовых) соединений
- •5.11. Геометрические характеристики плоских сечений
- •5.11.1. Статические моменты сечения. Центр масс сечения
- •5.11.2. Моменты инерции сечений
- •5.11.3. Моменты инерции прямоугольника, круга
- •5.12. Кручение стержней с круглым поперечным сечением
- •5.12.1. Понятие о крутящем моменте
- •5.12.2. Определение напряжений при кручении стержней с круглым поперечным сечением
- •5.12.3. Определение деформаций при кручении стержней с круглым поперечным сечением
- •5.13. Изгиб прямолинейного стержня
- •5.13.1. Общие понятия о деформации изгиба
- •5.13.2. Определение опорных реакций изгибаемых стержней
- •5.13.3. Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
- •5.13.3. Определение деформаций при изгибе
- •5.14. Сложные деформации
- •5.14.1. Понятие о теориях прочности
- •5.14.2. Изгиб с кручением стержней круглого поперечного сечения
- •5.15. Местные напряжения
- •5.15.1. Концентрация напряжений
- •5.15.2. Контактные напряжения
- •5.16. Устойчивость сжатых стержней
- •5.16.1. Устойчивость равновесия сжатого стержня
- •5.16.2. Определение критической силы, задача Эйлера
- •5.17. Прочность при циклически изменяющихся нагрузках (напряжениях)
- •5.17.1. Понятие об усталости материалов
- •5.17.2. Характеристики усталостной прочности материалов. Предел выносливости
- •5.17.3. Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений
- •5.17.4. Факторы, влияющие на предел выносливости
- •Тема 6. «Конструкционные материалы»
- •6.1. Требования к конструкционным материалам
- •6.2. Черные металлы
- •6.2.1. Чугуны
- •6.2.2. Стали
- •6.3. Цветные металлы и сплавы
- •6.3.1. Медь и ее сплавы
- •6.3.2. Алюминий и его сплавы
- •6.4. Пластмассы
- •6.5. Виды термической и химико-термической обработки стали
- •Тема 7. «Типовые Соединения деталей»
- •7.1. Разъемные соединения
- •7.1.1. Резьбовые соединения
- •7.1.2. Штифтовые соединения
- •7.1.3. Шпоночные соединения
- •7.1.4. Шлицевые соединения
- •7.1.5. Профильные соединения
- •7.2. Неразъемные соединения
- •7.2.1. Сварные соединения
- •7.2.2. Соединения пайкой
- •7.2.3. Заклепочные соединения
- •7.2.4. Клеевые соединения
- •7.2.5. Соединения заформовкой и запрессовкой
- •Тема 8. «Валы и оси»
- •8.1. Назначение, конструкции и материалы валов и осей
- •8.2. Расчет валов и осей
- •Тема 9. «опоры»
- •9.1. Подшипники скольжения
- •9.2. Подшипники качения
- •9.2.1. Классификация и устройство подшипников
- •9.2.2. Выбор подшипников качения
- •9.2.3. Посадки подшипников. Конструкции подшипниковых узлов
- •9.3. Специальные опоры
- •Тема 10. «Упругие элементы»
- •10.1. Назначение, классификация, основные свойства и материалы упругих элементов
- •10.2. Винтовые пружины
- •10.3. Плоские пружины
- •10.4. Мембраны, сильфоны и трубчатые пружины
- •10.5. Амортизаторы
- •Тема 11. «корпуса и несущие конструкции»
- •11.1. Корпуса
- •11.2. Несущие конструкции
- •Тема 12. «Муфты»
- •12.1. Назначение и классификация
- •12.2. Постоянные муфты
- •12.3. Управляемые муфты
- •12.4. Самоуправляемые муфты
- •Тема 13. «Зубчатые механизмы».
- •1 3.1. Параметры цилиндрических косозубых колес
- •13.2. Конструкции и материалы зубчатых колес
- •13.3. Конические зубчатые передачи
- •13.4. Червячные передачи
5.17.4. Факторы, влияющие на предел выносливости
На выносливость, сопротивление усталости элементов влияют ряд факторов, которые не учитываются в расчетах на прочность при статических нагрузках. В частности, на предел выносливости значительно влияют не только свойства материала, но и концентрация напряжений, размеры поперечных сечений элементов, состояние поверхности и другие факторы. Рассмотрим их влияние более подробно.
Влияние концентрации напряжений. Концентраторы напряжений, т.е. резкие изменения размеров поперечного сечения, отверстия, выточки, надрезы и т.п. значительно снижают предел выносливости, полученный для образцов без концентрации напряжений. Это учитывают эффективным коэффициентом концентрации Кσ, который определяется экспериментально как отношение пределов выносливости образцов, имеющих одинаковые размеры, без концентрации и с концентрацией напряжений. Чем прочнее материал, тем чувствительнее он к концентрации напряжений. Величина Кσ зависит от геометрических особенностей детали и свойств материала. Для типовых концентраторов напряжений и наиболее широко применяемых материалов значения эффективного коэффициента концентрации приводятся в справочной литературе.
Влияние размеров деталей. Замечено, что с увеличением размеров испытуемых образцов предел выносливости при прочих равных условиях уменьшается. Это учитывается с помощью масштабного коэффициента или коэффициента влияния абсолютных размеров поперечного сечения Кd – отношения предела выносливости σ–1d образцов диаметром d к пределу выносливости σ–1 стандартных образцов, имеющих диаметры 6 … 10 мм. В литературе приводится пример, когда при увеличении диаметра образца с 7 до 70 мм значение предела выносливости снижается на 30 … 40%. Это объясняется тем, что с увеличением абсолютных размеров возрастает вероятность попадания структурных дефектов, снижающих прочность. Кроме того, для образцов больших размеров более благоприятны условия развития усталостных трещин. Масштабные коэффициенты Кd определяют на гладких образцах и на образцах с концентраторами напряжений.
Влияние состояния поверхности. Известно, что усталостное разрушение начинается с зарождения на поверхности микротрещин, поэтому грубая обработка поверхности способствует их появлению и уменьшению предела выносливости. Для повышения сопротивления усталости нужна высокая чистота поверхности, особенно в местах концентрации напряжений. При расчетах на усталостную прочность шероховатость поверхности учитывают коэффициентом чистоты (качества) поверхности КF, равным отношению предела выносливости образцов с заданной шероховатостью поверхности к пределу выносливости образцов с шероховатостью не грубее Ra = 0,32.
Различные способы поверхностного упрочнения повышают сопротивление усталости. Они учитываются с помощью коэффициента влияния поверхностного упрочнения Кv, который определяется отношением пределов выносливости упрочненных и неупрочненных образцов. Величины коэффициента Кv в зависимости от способа упрочнения поверхности (цементация, наклеп, азотирование и т.д.) приведены в справочной литературе.
С учетом совместного влияния перечисленных факторов предел выносливости элемента σRd меньше предела выносливости σR стандартных образцов. Его определяют по формуле
σRd = (σR·Kd·KF·Kv)/Kσ. (5.105)
При известном максимальном напряжении σmax цикла запас прочности при переменных напряжениях равен
n = σRd/σmax. (5.106)
Обычно коэффициент запаса усталостной прочности находится в пределах 1,3 … 5. При расчетах на прочность по касательным переменным напряжениям все приведенные выше рассуждения имеют силу, естественно, обозначения σ в соответствующих выражениях необходимо заменить на τ.
