
- •Материал для теоретического изучения дисциплины. Тема 1. «вводная лекция»
- •1.1.Содержание и задачи курса.
- •Тема 2. «структурный анализ механизмов»
- •2.1.Звенья и кинематические пары механизмов.
- •2.2.Кинематические цепи. Степень подвижности механизмов
- •Тема 3. «классификация передаточных механизмов»
- •3.1.Шарнирно-рычажные механизмы.
- •3.2.Фрикционные механизмы
- •3.2.1.Общие сведения
- •3.2.2.Упругое скольжение
- •3.2.3.Геометрическое скольжение
- •3.2.4.Кинематика фрикционных механизмов
- •3.2.5. Расчет фрикционных передач
- •3.3.Зубчатые механизмы
- •3.3.1.Общие сведения
- •3.3.2.Параметры цилиндрических прямозубых колес
- •3.3.3.Кинематика многоступенчатых передач с неподвижными осями.
- •3.3.4.Передаточное отношение многоступенчатых передач
- •3.4.Кинематика винтовых механизмов
- •3.5.Механизмы с гибкими звеньями.
- •Тема 4. «основы точности механизмов»
- •4.1. Ошибки механизмов и их деталей
- •4.2. Точность деталей и их соединений
- •4.2.1. Допуски линейных размеров
- •4.2.2. Посадки деталей
- •4.2.3. Шероховатость поверхности
- •4.2.4. Отклонения формы и расположения поверхностей
- •Тема 5. «основы расчетов звеньев механизмов на прочность и жесткость»
- •5.1. Деформации и напряжения. Метод сечений
- •5.2. Простейшие типы деформации стержней
- •5.3. Допущения, принимаемые при расчетах на прочность
- •5.4. Определение деформаций и напряжений при растяжении-сжатии
- •5.5. Определение механических свойств материалов. Диаграмма напряжений
- •5.6. Твердость материалов
- •5.7. Допускаемые напряжения. Условия прочности и жесткости конструкций
- •5.8. Напряжения в наклонных сечениях растянутых стержней
- •5.9. Закон парности касательных напряжений
- •5.10. Деформация сдвига
- •5.10.1. Напряжения и деформации при сдвиге
- •5.10.2. Расчет на сдвиг заклепочных (болтовых) соединений
- •5.11. Геометрические характеристики плоских сечений
- •5.11.1. Статические моменты сечения. Центр масс сечения
- •5.11.2. Моменты инерции сечений
- •5.11.3. Моменты инерции прямоугольника, круга
- •5.12. Кручение стержней с круглым поперечным сечением
- •5.12.1. Понятие о крутящем моменте
- •5.12.2. Определение напряжений при кручении стержней с круглым поперечным сечением
- •5.12.3. Определение деформаций при кручении стержней с круглым поперечным сечением
- •5.13. Изгиб прямолинейного стержня
- •5.13.1. Общие понятия о деформации изгиба
- •5.13.2. Определение опорных реакций изгибаемых стержней
- •5.13.3. Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
- •5.13.3. Определение деформаций при изгибе
- •5.14. Сложные деформации
- •5.14.1. Понятие о теориях прочности
- •5.14.2. Изгиб с кручением стержней круглого поперечного сечения
- •5.15. Местные напряжения
- •5.15.1. Концентрация напряжений
- •5.15.2. Контактные напряжения
- •5.16. Устойчивость сжатых стержней
- •5.16.1. Устойчивость равновесия сжатого стержня
- •5.16.2. Определение критической силы, задача Эйлера
- •5.17. Прочность при циклически изменяющихся нагрузках (напряжениях)
- •5.17.1. Понятие об усталости материалов
- •5.17.2. Характеристики усталостной прочности материалов. Предел выносливости
- •5.17.3. Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений
- •5.17.4. Факторы, влияющие на предел выносливости
- •Тема 6. «Конструкционные материалы»
- •6.1. Требования к конструкционным материалам
- •6.2. Черные металлы
- •6.2.1. Чугуны
- •6.2.2. Стали
- •6.3. Цветные металлы и сплавы
- •6.3.1. Медь и ее сплавы
- •6.3.2. Алюминий и его сплавы
- •6.4. Пластмассы
- •6.5. Виды термической и химико-термической обработки стали
- •Тема 7. «Типовые Соединения деталей»
- •7.1. Разъемные соединения
- •7.1.1. Резьбовые соединения
- •7.1.2. Штифтовые соединения
- •7.1.3. Шпоночные соединения
- •7.1.4. Шлицевые соединения
- •7.1.5. Профильные соединения
- •7.2. Неразъемные соединения
- •7.2.1. Сварные соединения
- •7.2.2. Соединения пайкой
- •7.2.3. Заклепочные соединения
- •7.2.4. Клеевые соединения
- •7.2.5. Соединения заформовкой и запрессовкой
- •Тема 8. «Валы и оси»
- •8.1. Назначение, конструкции и материалы валов и осей
- •8.2. Расчет валов и осей
- •Тема 9. «опоры»
- •9.1. Подшипники скольжения
- •9.2. Подшипники качения
- •9.2.1. Классификация и устройство подшипников
- •9.2.2. Выбор подшипников качения
- •9.2.3. Посадки подшипников. Конструкции подшипниковых узлов
- •9.3. Специальные опоры
- •Тема 10. «Упругие элементы»
- •10.1. Назначение, классификация, основные свойства и материалы упругих элементов
- •10.2. Винтовые пружины
- •10.3. Плоские пружины
- •10.4. Мембраны, сильфоны и трубчатые пружины
- •10.5. Амортизаторы
- •Тема 11. «корпуса и несущие конструкции»
- •11.1. Корпуса
- •11.2. Несущие конструкции
- •Тема 12. «Муфты»
- •12.1. Назначение и классификация
- •12.2. Постоянные муфты
- •12.3. Управляемые муфты
- •12.4. Самоуправляемые муфты
- •Тема 13. «Зубчатые механизмы».
- •1 3.1. Параметры цилиндрических косозубых колес
- •13.2. Конструкции и материалы зубчатых колес
- •13.3. Конические зубчатые передачи
- •13.4. Червячные передачи
5.16. Устойчивость сжатых стержней
5.16.1. Устойчивость равновесия сжатого стержня
В нагруженных телах при любом деформированном состоянии имеет место равновесие между внешними и внутренними силами. Деформированное состояние характеризуется формой тела, формой равновесия. Под устойчивостью понимают свойство тела сохранять свою первоначальную форму равновесия.
Рассмотрим формы равновесия при сжатии стержней. При сжатии короткого жесткого стержня (рис. 5.29, а) его рассчитывают на прочность и жесткость по формулам для осевого сжатия (подразд. 5.4). При сжатии стержня, имеющего достаточно большую длину по сравнению с поперечными размерами, возможно следующее. Пока сжимающая сила F мала и ось стержня (рис. 5.29, б, г) строго прямолинейна, стержень находится в состоянии устойчивого равновесия. При величине сжимающей силы, равной некоторому критическому значению Fcr ось стержня искривляется (рис. 5.29, в, д). В этом случае начальная (расчетная) прямолинейная форма равновесия становится неустойчивой. Критической силой Fcr называется наименьшее значение сжимающей силы, при котором ось сжатого стержня теряет прямолинейность.
По определению Эйлера, критической силой называется сжимающая сила, требуемая для самого малого наклонения колонны.
а
б
в
г
д
Рис. 5.29
Понятие устойчивости не нужно смешивать с понятием прочности, каждое из них имеет самостоятельное значение. Например, сжатый стержень при действии силы, большей критической, изогнется, но деформации его будут упругими и он после снятия нагрузки восстановит свою первоначальную форму. Потеря устойчивости в этом случае не связана с потерей прочности; но в иных случаях потеря устойчивости, изменяя формы элемента, может привести к разрушению или невозможности элемента выполнять свои функции.
При расчете на устойчивость сжатых стержней, прежде всего, нужно уметь определять величину критической силы Fcr. Критическую силу рассматривают как предельную нагрузку. Допускаемая нагрузка должна быть, естественно, меньше критической
Fadm = Fcr/nS, (5.91)
где nS – коэффициент запаса устойчивости, величину которого принимают большей коэффициента запаса прочности п, так как учитывают дополнительные неблагоприятные факторы: начальную непрямолинейность оси стержня, возможный эксцентриситет действия сжимающей нагрузки и др. Для стальных стержней принимают nS = 1,8 … 3; для хрупких материалов – до 5,5.
Потеря устойчивости была причиной многих аварий и катастроф; она возможна при кручении, изгибе и сложных деформациях.
5.16.2. Определение критической силы, задача Эйлера
Задача по определению критической силы Fcr впервые была решена Л.Эйлером в 1744 г. Рассмотрим сжатый стержень при условии, что стержень (рис. 5.30, а) изогнулся, т.е. сжимающая сила равна критической. Для изучения изгиба используем дифференциальное уравнение (5.79) изогнутой оси стержня
d2y/dx2 = Ми/EI. (5.92)
а
б
Рис. 5.30
Изгиб происходит в плоскости минимальной жесткости, т.е. поперечные сечения будут поворачиваться вокруг той оси, относительно которой момент инерции I имеет минимальное значение. Изгибающий момент по абсолютной величине в любом сечении равен
Ми = Fcr·y, (5.93)
где у – прогиб поперечного сечения. Так как прогиб у и вторая производная от него d2y/dx2 при любом направлении оси у всегда имеют противоположные знаки, уравнение (5.92) выразим как
d2y/dx2 = (–Fcr·y)/(EI). (5.94)
Обозначая
k2 = Fcr/(EI), (5.95)
представим уравнение (5.94) в виде y'' + k2y = 0. Это линейное дифференциальное уравнение второго порядка. Его общее решение имеет вид
y = C sin kx + D cos kx. (5.96)
Для определения постоянных интегрирования С и D используем известные граничные условия, а именно, условия крепления на концах стержня: при х = 0 и при х = ℓ прогиб отсутствует, т.е. у = 0.
Подставляя в уравнение (5.96) данные первого условия, определим, что D = 0, а стержень изгибается по синусоиде у = C sin kx. Из второго граничного условия найдем С sin kℓ = 0. Полученное соотношение справедливо, если С = 0 или sin kℓ = 0. Если считать С = 0, то при D = 0 прогиб (5.96) во всех поперечных сечениях по длине стержня при любых значениях х отсутствует, что противоречит исходной предпосылке. Выражение sin kℓ = 0 справедливо, когда kℓ = nπ, где n – произвольное целое число (n = 0, 1, 2, …). Подставляя значение k = (πn)/ℓ в выражение (5.95), получим что
Fcr = k2EI = (π2n2EI)/ℓ2. (5.97)
Чтобы стержень сохранял криволинейную форму, необходимо, чтобы сила была отлична от нуля, т.е. n ≠ 0. С практической точки зрения интерес представляет наименьшее значение критической силы, при действии которой происходит искривление оси стержня, потеря устойчивости. При n = 1 получаем наименьшее значение критической силы, равное
Fcr = (π2EI)/ℓ2. (5.98)
Используя особенности упругой линии, можно распространить полученное решение на другие случаи закрепления стержня. Так, если стержень на одном конце жестко защемлен, а на другом – свободен (рис. 5.30, б), то упругую линию стержня легко привести путем зеркального отображения относительно заделки к упругой линии шарнирно закрепленного стержня (рис. 5.30, а). Очевидно, критическая сила стержня с таким закреплением длиной ℓ будет равна критической силе шарнирно закрепленного стержня длиной 2ℓ.
Общее выражение критической силы для сжатого стержня в обобщенном виде с учетом его типа крепления примет вид
Fcr = (π2EI)/(υℓ)2, (5.99)
где υ – коэффициент приведения длины стержня (коэффициент Ясинского), т.е. число, показывающее, во сколько раз нужно изменить длину шарнирно опертого с обоих концов стержня, чтобы критическая сила его была равна критической силе стержня с конкретными условиями закрепления. Чаще всего концы сжимаемых стержней закрепляют одним из четырех способов, показанных на рис. 5.31. Коэффициенты приведения длины указаны на схемах крепления. Наиболее чувствительным к потере устойчивости является крепление, представленное на рис 5.31, а и наименее чувствительным – на рис. 5.31, г. Отметим, что применение формулы (5.99) правомерно только при условии, что деформация сжатого стержня в момент потери начальной формы равновесия является упругой.
а б в г
Рис. 5.31