
- •Материал для теоретического изучения дисциплины. Тема 1. «вводная лекция»
- •1.1.Содержание и задачи курса.
- •Тема 2. «структурный анализ механизмов»
- •2.1.Звенья и кинематические пары механизмов.
- •2.2.Кинематические цепи. Степень подвижности механизмов
- •Тема 3. «классификация передаточных механизмов»
- •3.1.Шарнирно-рычажные механизмы.
- •3.2.Фрикционные механизмы
- •3.2.1.Общие сведения
- •3.2.2.Упругое скольжение
- •3.2.3.Геометрическое скольжение
- •3.2.4.Кинематика фрикционных механизмов
- •3.2.5. Расчет фрикционных передач
- •3.3.Зубчатые механизмы
- •3.3.1.Общие сведения
- •3.3.2.Параметры цилиндрических прямозубых колес
- •3.3.3.Кинематика многоступенчатых передач с неподвижными осями.
- •3.3.4.Передаточное отношение многоступенчатых передач
- •3.4.Кинематика винтовых механизмов
- •3.5.Механизмы с гибкими звеньями.
- •Тема 4. «основы точности механизмов»
- •4.1. Ошибки механизмов и их деталей
- •4.2. Точность деталей и их соединений
- •4.2.1. Допуски линейных размеров
- •4.2.2. Посадки деталей
- •4.2.3. Шероховатость поверхности
- •4.2.4. Отклонения формы и расположения поверхностей
- •Тема 5. «основы расчетов звеньев механизмов на прочность и жесткость»
- •5.1. Деформации и напряжения. Метод сечений
- •5.2. Простейшие типы деформации стержней
- •5.3. Допущения, принимаемые при расчетах на прочность
- •5.4. Определение деформаций и напряжений при растяжении-сжатии
- •5.5. Определение механических свойств материалов. Диаграмма напряжений
- •5.6. Твердость материалов
- •5.7. Допускаемые напряжения. Условия прочности и жесткости конструкций
- •5.8. Напряжения в наклонных сечениях растянутых стержней
- •5.9. Закон парности касательных напряжений
- •5.10. Деформация сдвига
- •5.10.1. Напряжения и деформации при сдвиге
- •5.10.2. Расчет на сдвиг заклепочных (болтовых) соединений
- •5.11. Геометрические характеристики плоских сечений
- •5.11.1. Статические моменты сечения. Центр масс сечения
- •5.11.2. Моменты инерции сечений
- •5.11.3. Моменты инерции прямоугольника, круга
- •5.12. Кручение стержней с круглым поперечным сечением
- •5.12.1. Понятие о крутящем моменте
- •5.12.2. Определение напряжений при кручении стержней с круглым поперечным сечением
- •5.12.3. Определение деформаций при кручении стержней с круглым поперечным сечением
- •5.13. Изгиб прямолинейного стержня
- •5.13.1. Общие понятия о деформации изгиба
- •5.13.2. Определение опорных реакций изгибаемых стержней
- •5.13.3. Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
- •5.13.3. Определение деформаций при изгибе
- •5.14. Сложные деформации
- •5.14.1. Понятие о теориях прочности
- •5.14.2. Изгиб с кручением стержней круглого поперечного сечения
- •5.15. Местные напряжения
- •5.15.1. Концентрация напряжений
- •5.15.2. Контактные напряжения
- •5.16. Устойчивость сжатых стержней
- •5.16.1. Устойчивость равновесия сжатого стержня
- •5.16.2. Определение критической силы, задача Эйлера
- •5.17. Прочность при циклически изменяющихся нагрузках (напряжениях)
- •5.17.1. Понятие об усталости материалов
- •5.17.2. Характеристики усталостной прочности материалов. Предел выносливости
- •5.17.3. Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений
- •5.17.4. Факторы, влияющие на предел выносливости
- •Тема 6. «Конструкционные материалы»
- •6.1. Требования к конструкционным материалам
- •6.2. Черные металлы
- •6.2.1. Чугуны
- •6.2.2. Стали
- •6.3. Цветные металлы и сплавы
- •6.3.1. Медь и ее сплавы
- •6.3.2. Алюминий и его сплавы
- •6.4. Пластмассы
- •6.5. Виды термической и химико-термической обработки стали
- •Тема 7. «Типовые Соединения деталей»
- •7.1. Разъемные соединения
- •7.1.1. Резьбовые соединения
- •7.1.2. Штифтовые соединения
- •7.1.3. Шпоночные соединения
- •7.1.4. Шлицевые соединения
- •7.1.5. Профильные соединения
- •7.2. Неразъемные соединения
- •7.2.1. Сварные соединения
- •7.2.2. Соединения пайкой
- •7.2.3. Заклепочные соединения
- •7.2.4. Клеевые соединения
- •7.2.5. Соединения заформовкой и запрессовкой
- •Тема 8. «Валы и оси»
- •8.1. Назначение, конструкции и материалы валов и осей
- •8.2. Расчет валов и осей
- •Тема 9. «опоры»
- •9.1. Подшипники скольжения
- •9.2. Подшипники качения
- •9.2.1. Классификация и устройство подшипников
- •9.2.2. Выбор подшипников качения
- •9.2.3. Посадки подшипников. Конструкции подшипниковых узлов
- •9.3. Специальные опоры
- •Тема 10. «Упругие элементы»
- •10.1. Назначение, классификация, основные свойства и материалы упругих элементов
- •10.2. Винтовые пружины
- •10.3. Плоские пружины
- •10.4. Мембраны, сильфоны и трубчатые пружины
- •10.5. Амортизаторы
- •Тема 11. «корпуса и несущие конструкции»
- •11.1. Корпуса
- •11.2. Несущие конструкции
- •Тема 12. «Муфты»
- •12.1. Назначение и классификация
- •12.2. Постоянные муфты
- •12.3. Управляемые муфты
- •12.4. Самоуправляемые муфты
- •Тема 13. «Зубчатые механизмы».
- •1 3.1. Параметры цилиндрических косозубых колес
- •13.2. Конструкции и материалы зубчатых колес
- •13.3. Конические зубчатые передачи
- •13.4. Червячные передачи
5.5. Определение механических свойств материалов. Диаграмма напряжений
Свойства материалов при расчетах на прочность, жесткость и устойчивость определяются механическими характеристиками. Величины механических характеристик могут быть получены в лабораторных условиях доведением образцов до разрушения или чрезмерной деформации. Испытания могут проводить на деформации растяжения, сжатия, кручения, изгиба при действии статической или переменной нагрузок.
Наибольшее распространение имеют испытания на растяжение статической нагрузкой, так как они наиболее просты и дают достаточную информацию о поведении материала при других видах деформации. На специальных машинах растягивают образцы (рис. 5.8, а), размеры которых ограничены стандартом, записывая автоматически зависимость изменения растягивающей силы F от удлинения образца Δℓ , т.е. диаграмму растяжения в координатах F = f(Δℓ).
а
б
в
Рис. 5.8
Известно, что величина растягивающей силы F (5.7) и величина удлинения Δℓ (5.9) образцов из одного материала зависят от их размеров. Чтобы можно было сравнить результаты испытаний образцов различных размеров, изготовленных из одинаковых материалов, диаграмму растяжения перестраивают в координатах σ = F/A и ε = Δℓ/ ℓ , где А – первоначальная площадь сечения образцов; ℓ – первоначальная длина рабочей части образца. Эту диаграмму σ = f (ε) называют диаграммой напряжений или условной диаграммой растяжения, вид которой почти не зависит от абсолютных размеров используемых при испытании образцов, а определяется свойствами материала. Типовая диаграмма напряжений при растяжении образцов из пластичных материалов (рис. 5.8, в) характеризуется следующими участками. Участок длиной ОА до некоторого напряжения σpr, называемого пределом пропорциональности, представляет прямую линию. На этом участке справедлив закон Гука и величина абсолютной деформации Δℓ прямо пропорциональна растягивающему усилию F, а относительная деформация ε – напряжению σ.
После достижения предела пропорциональности σpr деформации ε растут не прямо пропорционально напряжениям σ, а быстрее. Начиная с некоторой точки В, лежащей уже на криволинейном участке диаграммы, замечено появление незначительных (0,05%) остаточных деформаций, до точки В деформации еще упругие. Точке В соответствует предел упругости материала σe* – то наибольшее напряжение, до которого в материале появляются только упругие деформации. Предел упругости практически совпадает с пределом пропорциональности и эти величины обычно не разграничиваются. Например, для стали Ст3 предел пропорциональности σpr ≈ 210 МПа, а предел упругости σe ≈ 220 МПа.
При дальнейшем увеличении нагрузки за точкой В появляются остаточные деформации. В точке С начинается процесс деформации металла без увеличения внешней нагрузки. Горизонтальный участок диаграммы называется площадкой текучести, а напряжение, соответствующее данной точке, – пределом текучести (σy**). Ряд материалов дает при растяжении диаграмму без выраженной площадки текучести (рис 5.9). Для таких материалов пределу текучести σy соответствует напряжение, при котором остаточная деформация равна 0,2%. Поэтому иногда предел текучести обозначают σ0,2 и называют условным пределом текучести.
На участке DK сопротивление деформированию начинает значительно возрастать при увеличении деформации. Участок называется зоной упрочнения. Точка К диаграммы соответствует наибольшей по величине нагрузке, а напряжение, соответствующее этой точке (наибольшей по величине нагрузке), называется пределом прочности σu*** или временным сопротивлением и обозначается при растяжении σut****. До точки К весь образец удлиняется примерно одинаково, при превышении напряжения σu деформация образца сосредоточивается в одном месте (локализуется). Это вызывает местное сужение поперечного сечения образца с образованием так называемой «шейки». Площадь сечения образца в шейке быстро уменьшается, и, как следствие, падает усилие и условное напряжение. В точке R происходит разрыв образца по наименьшему сечению шейки (рис. 5.8, б).
Кроме перечислимых выше прочностных характеристик при испытании на растяжение определяют характеристики пластичности материала, т.е. способности материала получать не разрушаясь большие остаточные деформации: относительное остаточное удлинение при разрыве
(5.11)
и относительное остаточное сужение при разрыве
,
(5.12)
где ℓp, Ap – соответственно расчетная длина образца и площадь поперечного сечения в наиболее тонком месте шейки после разрыва.
Чем пластичнее материал, тем больше εr* и ψr. Если испытываемый образец не доводя до разрушения нагрузить до состояния, соответствующего точке L диаграммы (см. рис. 5.8, в), а затем разгрузить, то процесс разгрузки изобразиться прямой LL1. Эта прямая всегда параллельна участку ОА диаграммы. При разгрузке деформация полностью не исчезает. Она уменьшается на величину упругой деформации, т.е. на величину L1M. Отрезок OL1 представляет собой остаточную или пластическую деформацию.
Рис. 5.9 Рис. 5.10
Противоположным свойству пластичности является хрупкость, т.е. способность материала разрушаться при незначительных остаточных деформациях. Для хрупких материалов характерно разрушение при малых остаточных деформациях (рис. 5.10), поэтому при их испытании на растяжение определяется только предел прочности σut. К хрупким материалам относят чугуны, высокоуглеродистые инструментальные стали, стекло и др.