- •Физические основы механики
- •1. Кинематика поступательного движения
- •1. Основные понятия кинематики
- •2. Скорость
- •3. Ускорение
- •4. Уравнения равнопеременного движения
- •5. Стандартный график движения поезда
- •2. Силы в механике
- •1. Сила тяжести и вес тела
- •2. Силы трения покоя и скольжения
- •3. Аэродинамические силы
- •4. Сила упругости
- •3. Силы в транспорте
- •1. Сила тяги локомотива
- •2. Зависимость силы тяги от скорости
- •3. Сила трения качения
- •4. Сила торможения
- •4. Динамика поступательного движения
- •1. Законы Ньютона
- •2. Движение поезда в режиме постоянной силы тяги
- •3. Движение поезда в режиме постоянной мощности
- •4. Движение поезда при торможении и выбеге
- •5. Неинерциальные системы отсчета
- •Силы инерции
- •2. Движение вагона на повороте
- •3. Опрокидывание вагона на повороте.
- •4. Силы в автосцепках вагонов
- •6. Статика
- •1. Условие равновесия тел
- •2. Сила давления вагона на рельсы
- •3. Стоянка поезда на спуске
- •4. Балластировка локомотива
- •7. Законы сохранения в механике
- •1. Закон сохранения импульса
- •2. Работа
- •3. Кинетическая энергия
- •4. Потенциальная энергия
- •5. Закон сохранения энергии
- •8. Соударение тел
- •1. Явление удара
- •2. Соударение тел
- •3. Сцепление вагонов
- •Параметры кинематики вращательного движения
- •2. Момент силы
- •3. Основной закон динамики вращательного движения
- •4. Расчет момента инерции некоторых тел
- •10. Динамика плоского движения тел
- •1. Движение центра масс
- •1. Плоское движение твердых тел
- •3. Теорема Штейнера
- •4. Ускорение при скатывании вагона
- •11. Кинетическая энергия вращателього
- •1. Кинетическая энергия вращательного движения
- •2. Кинетическая энергия при плоском движении тела
- •3. Скатывание вагона с сортировочной горки
- •4. Аккумулирование энергии маховиком
- •12. Закон сохранения момента импульса
- •1. Момент импульса
- •2. Закон сохранения момента импульс для одного тела
- •3. Закон сохранения момента импульса для системы тел
- •4. Гироскоп
- •13. Релятивистская механика
- •1. Постулаты сто
- •2. Преобразования Лоренца
- •3. Следствия преобразований Лоренца
- •3. Основы релятивистской механики
- •4. Радиолокационный скоростемер.
- •14. Механические колебания
- •1. Уравнение гармонических колебаний.
- •2. Пружинный маятник
- •3. Физический маятник
- •4. Галопирующие колебания вагона
- •15. Затухающие колебания
- •1. Уравнение затухающих колебаний
- •2. Параметры затухания колебаний
- •3. Амортизаторы вагона
- •4. Рессорное подвешивание вагона
- •16. Вынужденные колебания
- •1. Уравнение вынужденных колебаний
- •2. Вибрация электродвигателя
- •17. Волны в упругих средах
- •1. Уравнение волны.
- •2. Интерференция волн
- •3. Скорость распространения упругих волн
- •4. Колебания контактного провода
- •1. Кинематика поступательного движения…………………… …………...………7
1. Кинематика поступательного движения
1. Основные понятия кинематики
Существует два основных вида движения тел: поступательное и вращательное. При поступательном движении любая прямая, связанная с телом, остается параллельной самой себе, поэтому изучение движения тела сводится к изучению движения любой точки тела. Тело можно принять за материальную точку, масса которой равна массе тела. Материальной точкой называется макроскопическое тело, размеры и форму которого можно не учитывать в данной задаче. Например, движение поезда между станциями можно рассматривать как движение материальной точки.
П
оложение
материальной точки в пространстве можно
определить только относительно других
тел. Тело отсчета, связанная с ним система
координат и способ отсчета времени
образуют систему
отсчета.
Положение материальной точки в
пространстве определяется радиус-вектором
.
Радиус-вектор
– это вектор, соединяющий начало системы
координат с положением материальной
точки в пространстве (рис. 1.1). Зависимость
радиус-вектора от времени называется
основным
кинематическим уравнением движения
.
Проекции
радиус-вектора на координатные оси
определяют координаты тела x,
y,
z
, (1.1)
где
единичные орты координат. Уравнения
зависимости координат от времени
определяют положение материальной
точки в пространстве
.
Если из этих уравнений исключить время t , мы получим уравнение траектории – линии, вдоль которой двигалось тело. Траектория – понятие относительное, форма траектория зависит от выбора системы отсчета. В зависимости от формы траектории движение может быть прямолинейным или криволинейным. Для рельсового транспорта траектория определяется расположением рельсов.
Параметрами поступательного движения материальной точки по траектории являются вектор перемещения и путь. Перемещение – это вектор, соединяющий начальную и конечную точки траектории (рис.1.1). Путь – это длина траектории или расстояние, проходимое телом от начала до конца движения. На рис 1.1 это длина пунктирной линии. Путь – величина скалярная и положительная. По величине путь и перемещение равны при прямолинейном движении в одном направлении или на бесконечно малом участке траектории.
2. Скорость
Быстрота изменения
вектора перемещения во времени
характеризуется скоростью. Мгновенная
скорость
это вектор, равный отношению бесконечно
малого перемещения
ко времени перемещения:
.
(1.2)
То есть скорость
равна первой производной от вектора
перемещения по времени. Вектор мгновенной
скорости, как и вектор перемещения
,
направлен по касательной к траектории
в сторону движения.
Продифференцировав по времени уравнение (1.1) получим уравнение для вектора скорости через проекции на оси координат
, (1.3)
где
,
,
.
Модуль вектора скорости определяется
по теореме Пифагора
.
При бесконечно
малом перемещении длина пути dS
приближается к величине элементарного
перемещения
.
Поэтому величина мгновенной скорости
может быть определена также как первая
производная от пути по времени
.
(1.4)
Неравномерное движение тела с переменной по величине скоростью характеризуют средней скоростью
. (1.5)
По определению средняя скорость неравномерного движения равна отношению всего пути ко всему времени движения.
