Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vasilek.docx
Скачиваний:
9
Добавлен:
13.08.2019
Размер:
1 Mб
Скачать

1.2 Гибридизация в качестве основного метода создания гибридов и новых

сортов растений

Скрещивание организмов имеющих разную наследственную основу хотя бы по одному или нескольким признакам, называется гибридизацией.

Гибридами соответственно называют потомство, полученное в результате такого скрещивания.

Гибридизацию нельзя рассматривать как простое арифметическое суммирование признаков и свойств растений. Родительские организмы передают потомству не признаки, а гены, на основе которых в каждом поколении гибридов признаки, контролируемые этими генами, развиваются вновь. Гибридизация используется в качестве способа получения исследования, получившего название гибридологического метода генетического анализа. Этот метод генетики основан на принципе Менделеевского анализа наследования и взаимодействия отдельных генов у организмов. При этом у гибридного поколения получается наследование не совокупности признаков, а одного, двух или трех контрастных признаков в ряду последовательных поколений с применением индивидуального анализа потомства от каждого гибридного растения.

Гибридизацию относят к категории комбинативной селекции, так как основной целью при этом является получение потомства с новой совокупностью генетически обусловленных признаков и свойств. Последующим отбором и направленным воспитанием гибридного потомства новые ценные признаки и свойства закрепляются и усиливаются.

В зависимости от числа расщепляющихся признаков у исходной пары особей, то есть у родителей, скрещивание их между собой называют:

а) моногибридные - отличия по одному признаку;

б) дигибридными – отличия по двум признакам;

в) тригибридные – отличия по трем признакам;

г) полигибридные – отличия более чем по трем признакам.

Согласно опытам Менделя, признак который сохранился в первом поколении F1, называют доминантным, а подавляющий – рецессивным. Подавление и гибридных организмов одних признаков другими получило название в генетике доминирование. Поэтому гибриды F1 всегда одинаковы между собой по фенотипу (внешним признакам) и с родителями, имеющими доминантные признаки. Это правило единообразия гибридов первого поколения.

Позже, во втором поколении гибридов F2 рецессивный признак, который находится в скрытом виде в первом поколении гибридов, вновь возникает (выщепляется) в потомках гибридов. В результате скрещивания F1 и F2 находятся:

  • чисто доминантные особи состоят из двух доминантных генов (АА);

  • чисто рецессивные особи – аа,

(это гомозиготные организмы);

  • гетерозиготные особи – имеющие аллеломорфную пару генов (Аа)

Таким образом, гибриды второго поколения F2 имеют генотип трех типов: АА, Аа, аа.

Расщепление признаков по генотипу происходит по числовому соотношению близкому к 3:1. А расщепление по генотипу – в соотношении 1:2:1. (АА, аа – один раз; Аа – два раза). Это явление получило название второй закон Менделя.

При дигибридном скрещивании (скрещивании организмов, отличающихся по двум парам неаллельных признаков) в первом поколении, как и при моногибридном скрещивании, расщепления по фенотипу нет, а затем при самоопылении (F1x F1) гены свободно независимо сочетаются друг с другом во всех возможных комбинациях (комбинативная изменчивость) и расщепляются в итоге по фенотипу 9:3:3:1 или (3:1)2, по генотипу (1:2:1)2.

При дигибридном скрещивании по фенотипам и генотипам расщепление слипается из двух независимых моногибридных расщеплений. Независимое наследование или свободное комбинирование признаков при скрещивании назвали третьим законом Менделя. Тот же закон действует и при полигибридных скрещиваниях:

  • Тригибридное скрещивание:

Расщепление по фенотипу: (3:1)3;

Расщепление по генотипу: (1:2:1)3;

  • Полигибридное скрещивание:

Расщепление по фенотипу: (3:1)n;

Расщепление по генотипу: (1:2:1)n;

Знание этих законов имеет очень огромное значение т.к. является основой теоретических знаний для гибридизации, которая состоит в простом перекомбинировании признаков, скрещивающихся сортов. Но гибридные организмы несут в себе наряду с признаками отцовских организмов свои особенности как результат конкретного сочетания генов, которые не выявились через родительские гаметы.

Иногда при скрещивании в результате объединения взаимодействующих генов возникают совершенно новые признаки и свойства, которые отличаются от родительских форм. Поэтому было бы большей частью неверно сводить гибридизацию только к перекомбинированию генов и признаков родителей у потомства. Возможность получения растений, в той или иной степени сочетающих ценные признаки родительских пар, а так же обладающих новыми качествами. Метод гибридизации является важнейшим методом при решении задач искусственно направленного формообразования.

Одним из важных результатов гибридизации для селекции так же является гетерозис.

Гетерозис - проявление повышенной мощности роста и продуктивности первого поколения гибридов F1 в сравнении с родительскими формами. Он может наблюдаться при развитии физиологических, биохимических и морфологических признаков растения. Различают гетерозис различных типов в зависимости от вида растения и его отношения к окружающей среде:

  • Соматический гетерозис – более мощное развитие вегетативных частей растения у гибридов;

  • Репродуктивный – более мощное развитие репродуктивных органов;

  • Адаптивный – повышенная жизнеспособность и приспособленность гибридов к условиям окружающей среды.

Гетерозис проявляется только в первом гибридном поколении F1, во втором и последующих он постепенно затухает в следствии расхождении генов.

Поскольку гетерозис представляет собой комплексное явление, возникают некоторые проблемы для практической селекции, связанные с явлением гетерозиса. Чаще всего гибриды сравнивают с показателями у лучшего из родителя (это истинный гетерозис), со средним показателей родителя (гипотетический гетерозис), со стандартом (комплексный гетерозис).

Следует учитывать, что не всякая гибридизация ведет к гетерозисному эффекту. Для этого требуется скрещивать такие родительские пары, которые бы имели высокую комбинационную способность (КС). Чем ярче гетерозисный эффект, тем большая гетерозисная способность пар. Отбор форм с высокой КС очень труден: путем скрещивания растений и последующее скрещивание гибридного потомства одного растения поочередно со многими другими можно поучить потомство с различным выражением гетерозисного эффекта. Средняя величина гетерозиса ко всем этим комбинациям определит общую комбинационную способность (ОКС) данного исходного растения.

Специфическая комбинационная способность (СКС) – отклонение от среднего значения гетерозиса у той или иной конкретной комбинации.

ОКС у растений можно проверить через свободное естественное опыление испытываемого растения пыльцой неизвестного происхождения, методами топкросса (А* сорт-анализатор), поликросса (А × (В+С+D+…)). Оценка растений на ОКС является первым этапом. После того, как будут отобраны формы с высокой ОКС, производится их оценка на СКС, каждая форма оценивается по отношению к другой форме.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]