
- •1.1 Электронное строение твердых тел. Зонное строение твердых тел..........8
- •1 Электронное строение твердых тел. Зонное строение твердых тел. Энергия ферми
- •1.1 Электронное строение твердых тел. Зонное строение твердых тел
- •1.2 Энергия Ферми
- •Активные диэлектрики. Пьезоэлектирики. Их особенности
- •Активные диэлектрики
- •2.2 Пьезоэлектрики
- •3 ПОвЕдение твердых тел в магнитном поле. Магнитные свойства твердых тел
- •3.1 Магнитное поле в магнетиках
- •3.2 Магнитные свойства твердых тел
- •3.2.1 Диамагнитные и парамагнитные тела
- •3.2.2 Ферромагнитные тела
- •4 Рентгенофазовый и рентгеноструктурный анализ
- •4.1 Рентгеновские спектры
- •4.2 Рентгеноструктурный анализ
- •4.2.1 Методы рентгеновской съёмки кристаллов.
- •4.2.2 Применение рентгеноструктурного анализа
- •4.3 Рентгенофазовый анализ
- •Расшифровка дифрактограмм
- •5 Магнитные характеристики материалов
- •6 Задача
4.2.2 Применение рентгеноструктурного анализа
Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т. д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.
Также рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров.
4.3 Рентгенофазовый анализ
Основной задачей рентгенофазового анализа (РФА) является идентификация различных фаз в их смеси на основе анализа дифракционной картины, даваемой исследуемым образцом. Определение вещества в смеси проводится по набору его межплоскостных расстояний и относительным интенсивностям соответствующих линий на рентгенограмме [8].
Когерентно рассеянные рентгеновские лучи интерферируют между собой, при этом дифракционной решеткой для рентгеновского излучения служит кристаллическая решетка, поскольку межплоскостные расстояния в кристалле сравнимы с длиной волны излучения.
Целью рентгенофазового анализа является идентификация вещества в смеси по набору его межплоскостных расстояний (d) и относительным интенсивностям (I) соответствующих линий на рентгенограмме. Для этого, согласно закону Вульфа - Брегга, необходимо определение углов отражения θ.
Основным методом фазового анализа является «метод порошка», который получил широкое распространение из-за его простоты и универсальности. Метод порошка (Дебая - Шеррера) в фотографическом и дифрактометрическом вариантах позволяет определить химический состав и фазовое состояние кристаллов, измерить параметры их элементарных ячеек, изучить симметрию, степень окристаллизованности, а в простейших случаях расшифровать кристаллическую структуру или уточнить её отдельные характеристики [8].
Дебаеграмму снимают на дифрактометре ДРОН-3М в фильтровальном медном Ка - излучении. С помощью никелевых фильтров полностью поглощается b-излучения.
Предварительно проводят градуировку аппарата. Для этого рекомендуется
записать на ленту самопишущего прибора контрольную рентгенограмму порошкового образца a-кварца в интервале углов 67-69° и сравнить её с эталонной рентгенограммой [8].
Для того, чтобы приготовить порошок к рентгенофазовому анализу, образец
тщательно растирают в ступке до пудрообразного состояния. Первичный пучок
рентгеновских лучей с длиной волн l попадая на образец отражается от
плоскости, удостоверяющей уравнению Вульфа-Брегга:
nλ=2d(hkl) SinƟ,
и дают дифракционный луч.
В результате съемки на ДРОН-3М (рис. 4.5) получают рентгенограмму, которая характеризуется наличием набора рефлексов.
Рис. 4.5 Дифрактометр ДРОН-3М
Рефлекс, в свою очередь, характеризуется высотой и углом. Из дифрактограммы определяют интенсивность рефлексов с точностью 1% и межплоскостное расстояние 1/d² теор. Точность измерения зависит от угла поворота образца [8].