
- •Введение
- •1. Выбор электрооборудования
- •1.2. Выбор осветительных приборов
- •Рекомендации по проектированию осветительных приборов
- •1.3. Выбор степени защиты и исполнения электрооборудования
- •2. Расчет электрических нагрузок цеха (предприятия)
- •3. Схемы электроснабжения цеха (предприятия)
- •4. Выбор трансформаторов подстанции
- •5. Реактивная мощность в сетях промышленных предприятий и ее компенсация
- •Понятия активной, полной и реактивной мощностей
- •Компенсация реактивной мощности
- •6. Выбор проводов и жил кабелей
- •7. Общие указания по выбору аппаратов управления и защиты
- •8. Регулируемый электропривод как средство рационального использования энергоресурсов и снижения потребления реактивной энергии
- •8.1. Система тиристорный преобразователь напряжения – асинхронный двигатель
- •8.2. Внедрение частотно - регулируемых асинхронных электроприводов как средства сбережения электроэнергии, повышения cosφ
- •9. Качество электрической энергии и энергосбережение
- •Библиографический список
- •Приложение 1 Примеры определения момента нагрузки Мс
- •Приложение 2
- •Приложение 3
- •Приложение 4
- •Выбор кабельных линий, автоматического выключателя и предохранителя в сети 0,4 кВ Задание на проектирование
- •1. Расчет электрических нагрузок по коэффициенту расчетной активной мощности
- •Значения коэффициентов расчетной нагрузки Kр для питающих сетей
- •2. Расчет пиковых нагрузок электроприемников
- •3. Выбор кабельных линий
- •Допустимый длительный ток определяется следующим образом:
- •4. Расчет токов коротких замыканий
- •Трансформаторы трехфазные силовые общего назначения двухобмоточные
- •Расчет трехфазного короткого замыкания
- •Расчет однофазного короткого замыкания
- •5. Выбор защитной и коммутационной аппаратуры Выбор предохранителя
- •Выбор электротеплового реле
- •Выбор автоматического выключателя
- •6. Проверка кабеля на термическую стойкость
- •7. Проверка допустимости перегрева кабеля при протекании по нему пикового тока в течение времени срабатывания защиты
- •Приложение 6
- •Пример определения эффективности использования регулируемого привода насосных установок
- •Оглавление
- •Электроснабжение и электрооборудование промышленных предприятий
- •Редакционно-издательский отдел угту – упи
- •620002, Екатеринбург, ул. Мира, 19
- •620002, Екатеринбург, ул. Мира
8.2. Внедрение частотно - регулируемых асинхронных электроприводов как средства сбережения электроэнергии, повышения cosφ
В электрохозяйстве промышленных предприятий находится в эксплуатации большое количество насосов, вентиляторов, компрессоров, так называемых турбомеханизмов, имеющих «вентиляторный» (зависящий от скорости в квадрате или в более высокой степени) момент статической нагрузки.
В подавляющем большинстве случаев электроприводы указанных механизмов являются нерегулируемыми, что не позволяет обеспечить режим рационального энергопотребления при изменении технологических потребностей в широких пределах. Эти механизмы, выбранные при проектировании исходя из максимальной производительности, значительную часть времени работают с меньшей производительностью, что определяется изменением потребности в разные периоды времени.
Нерегулируемый электропривод не обеспечивает заметного снижения потребляемой мощности при уменьшении расхода, а также обусловливает существенный рост давления (напора) в системе, что неблагоприятно сказывается на работе технологического оборудования.
Рисунок 8.3 иллюстрирует возможности снижения мощности, потребляемой двигателем насоса, при регулировании скорости электропривода по сравнению с регулированием дроссельной заслонкой. Мощность, потребляемая насосом P, определяется по формуле (1.1). Мощность прямо пропорциональна подаче – производительности насоса Q и его напору H.
Характеристики магистрали с ненулевым статическим напором (с противодавлением) Нс, выраженным в относительных единицах: hс = Нс/Нн, изображены кривыми 3 и 4. При номинальном расходе и напоре насос работает в точке А, которой соответствует характеристика магистрали (кривая 3) и характеристика H (Q) насоса (кривая 1) при номинальной скорости двигателя. С уменьшением расхода при нерегулируемом электроприводе (на рис. 8.3, для примера, показан расход, составляющий 0,6Qн , где Qн – номинальный расход или подача) за счет дроссельного регулирования происходит изменение сопротивления магистрали (кривая 4), насос работает в точке В кривой 1, что приводит к возрастанию напора, который становится больше номинального. Мощность, потребляемая насосом, пропорциональна площади прямоугольника ODBF.
Рис. 8.3. Обоснование эффективности энергосбережения
при частотном регулировании асинхронного двигателя
по сравнению с регулированием заслонкой
При использовании регулируемого электропривода за счет снижения скорости при снижении расхода насос работает в точке С, что соответствует другой характеристике H(Q) (кривая 2) при неизменной характеристике магистрали (кривая 3). Мощность, потребляемая электроприводом в этом случае, пропорциональна OECF, что наглядно иллюстрирует возможности существенного снижения энергопотребления при внедрении регулируемых электроприводов насосов. Наилучшие технико-экономические показатели при регулировании скорости насосов обеспечивает система преобразователь частоты – асинхронный двигатель (ПЧ-АД), т. е. частотно-регулируемый асинхронный электропривод.
Качественная зависимость экономии мощности в функции от подачи (расхода) насоса Q при использовании систем ПЧ-АД вместо дроссельного регулирования показана заштрихованной областью на рис. 8.4.
На рис. 8.4 приведены следующие обозначения: Р/Рн – относительная потребляемая мощность, Рн – номинальная мощность двигателя, Q/Qн – относительный расход, Qн – номинальный расход, кривая 1 – потребляемая мощность при дроссельном регулировании, кривая 2 – потребляемая мощность при применении частотно-регулируемого асинхронного двигателя.
Относительный выигрыш ∆Pi* = ∆Pi /Pн в потребляемой мощности (∆Pi) при относительном расходе Qi* = Qi /Qн.
Рис. 8.4. Зависимость потребляемой мощности в функции расхода
при дроссельном регулировании (1) и частотном регулировании
асинхронного двигателя (2)
Частота вращения ротора двигателя n = f (1– s)/p. Поэтому, регулируя частоту f, изменяем n. Но для сохранения постоянного магнитного потока АД Ф при изменении f необходимо регулировать напряжение по величине [21], т. к.
Ф = Е/(к f ) ≈ U/ f ≈ const,
где Е – электродвижущая сила фазы обмотки статора АД.
Это является требованием к преобразователям частоты для электропривода.
Существующие вентильные преобразователи частоты подразделяются на преобразователи с непосредственной связью питающей сети и нагрузки (НПЧ) и на преобразователи частоты с промежуточным звеном постоянного тока.
НПЧ представляют собой три согласованно работающих реверсивных тиристорных преобразователя постоянного тока. НПЧ включается в статорную
цепь двигателя и служит для преобразования напряжения стандартной частоты в регулируемое в определенных пределах напряжение по величине и частоте
(0–20 Гц). Используются для тихоходных безредукторных электроприводов средней и большой мощностей [17].
Электропривод с преобразователем частоты с промежуточным звеном постоянного тока представлен на рис. 8.5 [20].
Рис. 8.5. Схема силовых цепей частотно-регулируемого
асинхронного электропривода:
SА – главный выключатель; FU – линейные предохранители; КМ – главный контактор; ZF1 – входной фильтр; LR1 – входной реактор; UD – выпрямитель; СВ – фильтр звена постоянного тока; UW – устройство торможения; UZ – автономный инвертор напряжения; LR2 – выходной реактор; ZF2 – выходной фильтр; M – асинхронный двигатель
ПЧ с неуправляемым выпрямителем (см. рис. 8.5) не обеспечивает двухсторонний обмен энергией между сетью и двигателем. При генераторном торможении отдаваемая АД энергия рассеивается в элементах инвертора и резисторе устройства торможения UW. Реактивная мощность Q на входе ПЧ пропорциональна квадрату выходного тока выпрямителя и величине реактивного сопротивления коммутирующего реактора.
Коэффициент мощности по основным гармоническим составляющим сетевого тока и напряжения Км = РS -1. На практике Км ≈ 0,9–0,98.
При активном (управляемом) выпрямителе обеспечивается не только рекуперативное торможение АД (при угле открытия тиристоров α больше 90 градусов), но и работа ПЧ с заданным коэффициентом мощности, например равном единице. Но такие преобразователи частоты дороже.
В прил. 6 представлены схемы частотного электропривода с автономным инвертором тока и транзисторным инвертором напряжения. Преобразователи частоты с автономным инвертором, используемые в электроприводах, позволяют получить выходную частоту от долей герца до нескольких сотен герц. Свойства схем, их достоинства и недостатки изложены в [3, 20, 21].
Асинхронный электропривод с ПЧ наряду с существенной экономией электроэнергии в статических режимах работы позволяет осуществлять плавный пуск и торможение. Прямой пуск АД сопровождается ударными моментами и токами в обмотках статора и ротора, значительно превышающими номинальные значения. Поэтому потери энергии в двигателе и потребление реактивной мощности при прямом пуске существенно возрастают.
Пример оценки экономии при использовании регулируемого электропривода приведен в прил. 6 [21, §11.4].
Срок окупаемости для ПЧ на напряжение 0,4 кВ – примерно 1,5–2 года при стоимости ПЧ $ 100–120 США на 1кВт регулируемой мощности. Стоимость качественных ПЧ для регулируемого электропривода на напряжение 6 кВ выше: $ 200–250 США на 1кВт регулируемой мощности. Стоимость устройства плавного пуска – $ 55–80 США на 1 кВт мощности двигателя. Отметим, что в данную оценку ресурса энергосбережения не входит экономический эффект, связанный с повышением cosφ, уменьшением потерь в линиях электроснабжения, существенным повышением надёжности механического и электрического оборудования, увеличением срока его службы, сокращением аварийности трубопроводов и их элементов, уменьшением потерь нефти и повышением экологической безопасности производства.
Выводы
1. Обследование промышленных предприятий показывает, что существующее электрооборудование насосных и компрессорных станций морально и физически устарело. Оно не обеспечивает экономию энергоресурсов. Применяемое регулирование напора дросселированием относится к энергетически неэффективным способам. Прямой пуск двигателей насосов связан со значительными пусковыми токами и приводит к гидравлическим ударам, повышению аварийности трубопроводов и их элементов, увеличению потерь воды, нефти и, как следствие, к снижению экологической безопасности.
2. При проектировании или при принятии решения о модернизации электрооборудования насосных станций необходимо, по нашему мнению, включить следующие основные технические решения:
– внедрение систем преобразователь частоты - асинхронный двигатель (ПЧ-АД) для плавного пуска и регулирования частоты вращения насосов;
– установку устройства плавного (мягкого) пуска для безударного запуска нерегулируемых электроприводов;
– установку программируемого контроллера для регулирования давления и подачи жидкости (нефти, воды), управления электрооборудованием насосных и компрессорных станций, автоматизации их работы и диагностики электрооборудования.
3. Переход на частотное управление электроприводами обеспечивает следующие преимущества:
– плавное бесступенчатое регулирование частоты вращения насосов во всём диапазоне, что позволяет поддерживать напор перекачиваемой жидкости на необходимом уровне;
– контролируемые плавный разгон и торможение двигателей существенно повышают надёжность механического и электрического оборудования, увеличивают срок его службы;
– повышение коэффициента мощности, т. к. преобразователь частоты практически не потребляет реактивной энергии;
– экономию электроэнергии в связи с переходом на энергетически эффективный способ управления и отказом от регулирования напора дросселированием;
– широкие возможности программной настройки параметров электроприводов, контроля работы, диагностики неисправностей.
4. После рассмотрения отечественных и зарубежных данных можно сделать вывод, что экономия энергоресурсов при частотном управлении в насосных, вентиляционных и компрессорных агрегатах составляет 30–50 %. Несмотря на высокую стоимость хороших преобразователей частоты, срок окупаемости, по научно-техническим публикациям, составляет 1–2 года. Рекомендуем их устанавливать в первую очередь на части насосного оборудования, работающего с пониженными коэффициентами мощности.
5. Необходимо обновление станочного парка на предприятиях, т.к. станочный парк в значительной мере состоит из старого (30 и более лет), физически изношенного, морально устаревшего, громоздкого оборудования. Износ станочного парка составляет 80 %. Установленная мощность станков завышена. В целях энергосбережения необходимо иметь более широкий спектр номенклатуры и мощности станочного парка.
6. При выходе из строя электродвигателей следует производить их отбраковку и заменять новыми [10]. По предварительным оценкам, электропотребление двигателей после ремонта возрастает на 10-40 % и более. Стоимость ремонта составляет 60-70 % и более стоимости нового двигателя. При определенных условиях выгоднее покупать новые электродвигатели, чем ремонтировать старые. Стоимость перерасхода потребляемой электроэнергии отремонтированным двигателем за три года равна стоимости нового двигателя, а с учетом стоимости ремонта новый двигатель окупается за год – полтора.
7. Реализация нижеследующих организационно-технических мероприяти обеспечивает в целом снижение энергозатрат на предприятиях до 1,5-2 %:
– проведение инвентаризации установленного электротехнического оборудования и разработка энергетического паспорта;
– разработка обоснованной системы нормирования расхода, учета и контроля производства, получения и потребления ТЭР, охватывающей все основные виды продукции и технологические процессы;
– составление годовых планов мероприятий капитального и текущего ремонтов энергетического оборудования, надлежащее проведение планово – предупредительных ремонтов;
– проведение обучения и пропаганды эффективных способов и методов экономии ТЭР среди работников предприятия;
– изучение возможности использования дешевых местных и нетрадиционных возобновляемых источников ТЭР;
– разработка системы стимулирования персонала, направленной на повышение эффективности функционирования энергопотребляющего оборудования и охватывающей все производственные подразделения и виды энергоресурсов.