
- •Выбор электрических аппаратов
- •Электродинамическое и термическое действие токов КЗ
- •Общие положения по выбору электрических аппаратов и параметров токоведущих устройств
- •Выбор электрических устройств по длительному режиму работы
- •Выбор электрических устройств по току КЗ
- •Выбор и проверка элементов системы электроснабжения выше 1кВ
- •Выбор числа и мощности силовых трансформаторов
- •Общие положения
- •Выбор типа трансформаторов
- •Выбор числа трансформаторов
- •Выбор мощности силовых трансформаторов
- •Выбор номинальной мощности трансформатора с учётом перегрузочной способности
- •Определение мощности потерь и энергии в силовых трансформаторах
- •Общие выводы по выбору числа и мощности силовых трансформаторов для систем электроснабжения
- •Режимы работы электроэнергетических систем
- •Резервы генерирующей мощности при управлении режимами ЭЭС
- •Выбор сечений проводов и кабелей
- •Общие положения
- •Выбор стандартного сечения проводника
- •Выбор сечений жил проводников по нагреву расчётным током
- •Выбор сечения по нагреву током короткого замыкания
- •Выбор сечений проводников по потерям напряжения
- •Выбор проводников электрической сети по экономической целесообразности
- •Расчёт токов короткого замыкания
- •Общие сведения о коротких замыканиях
- •Определение расчётных параметров элементов сети
- •Система относительных единиц
- •Система именованных единиц
- •Расчётная схема и схема замещения
- •Определение трёхфазного тока КЗ в сетях выше 1кВ
- •Определение токов КЗ от электрических машин напряжением выше 1кВ
- •Расчёт токов КЗ в электрических сетях до 1кВ
- •Влияние асинхронных двигателей на подпитку места КЗ до 1кВ
- •Расчёт несимметричных видов коротких замыканий
- •Расчёт токов КЗ в сетях постоянного тока
- •Защита элементов системы электроснабжения
- •Выбор предохранителей
- •Выбор автоматических выключателей
- •Основы релейной защиты
- •Требования к релейной защите, основные понятия и определения
- •Классификация РЗ
- •По элементной базе
- •По принципу действия электромеханических реле
- •По физической величине
- •По реакции на изменение входных физических величин
- •По принципу воздействия исполнительного органа на управляемую цепь
- •По способу действия на управляющий объект
- •По времени действия
- •По способу включения чувствительного элемента
- •По роду оперативного тока
- •По назначению
- •По типу
- •По способу обеспечения селективности при внешних К.З.
- •По характеру выдержек времени
- •По виду защит
- •Максимальные токовые защиты
- •Расчёт параметров МТЗ
- •Схемы МТЗ
- •МТЗ с независимой характеристикой времени срабатывания
- •МТЗ с зависимой характеристикой времени срабатывания
- •МТЗ с блокировкой по минимальному напряжению
- •Направленные МТЗ
- •Принцип работы реле направления мощности
- •Токовые отсечки
- •ТО мгновенного действия
- •Защита линий 6-35 кВ с помощью трёхступенчатой токовой защиты
- •Дифференциальные защиты
- •Продольная дифференциальная защита
- •Токовая погрешность ТА
- •Поперечная дифференциальная защита
- •Балансы мощности и электроэнергии
- •Баланс активной мощности
- •Баланс реактивной мощности
- •Баланс электроэнергии
- •Перенапряжения в системах электроснабжения
- •Общие положения
- •Защита от волн атмосферных перенапряжений
- •Защита от внутренних перенапряжений
- •Схемы защиты от перенапряжений
- •Молнезащита зданий и сооружений
- •Расчёт защиты зоны молнеотводов
- •Отклонения напряжения
- •Качество электрической энергии
- •Общие положения
- •Отклонения напряжения
- •Колебания напряжения
- •Размах изменения напряжения
- •Доза фликера
- •Несинусоидальность напряжения
- •Несимметрия напряжения
- •Длительность провала напряжения
- •Импульс напряжения
- •Коэффициент временного перенапряжения
- •Отклонение и размах колебаний частоты
- •Способы и средства улучшения качества электрической энергии
- •Компенсация реактивной мощности
- •Общие сведения
- •Способы снижения потребления реактивной мощности без компенсирующих устройств
- •Компенсирующие устройства
- •Расчёт потерь мощности и энергии в цеховых сетях
- •Скидки и надбавки к тарифу на электрическую энергию за компенсацию реактивной мощности
- •Выбор мощности и места установки компенсирующих устройств
- •Определение места установки компенсирующих устройств в сетях до 1 кВ
- •Компенсация реактивной мощности в сети 6-10 кВ
- •Компенсация реактивной мощности в электрических сетях со специфическими нагрузками
- •В сетях с резкопеременной несимметричной нагрузкой
- •Компенсация реактивной мощности в сети с резкопеременными нагрузками
- •Компенсация реактивной мощности в электрической сети с несимметричными нагрузками
- •Продольная ёмкостная компенсация реактивной мощности
- •Назначение и область применения продольной компенсации
- •Повышение предела пропускной способности линий электропередачи по углу. Улучшение потока распределения в сетях
- •Снижение потери напряжения
- •Выбор числа и мощности конденсаторов при продольной компенсации
- •Ёмкость конденсаторной установки на фазу
- •Сравнение продольной и поперечной компенсации
- •Сравнение по повышению уровня напряжения
- •Сравнение по активным потерям энергии
- •Сравнение требуемой мощности конденсаторов при последовательном и параллельном их включении
- •Раздел №2. Электрические нагрузки
- •Графики электрических нагрузок промышленных предприятий
- •Классификация графиков электрических нагрузок
- •Основные определения и обозначения
- •Показатели графиков электрических нагрузок
- •Методика определения эффективного числа электроприёмников
- •1. Определение эффективного числа приёмников при трёхфазных нагрузках
- •2. Определение эффективного числа приёмников при однофазных нагрузках
- •Определение средних нагрузок
- •Определение среднеквадратичных нагрузок
- •Определение расхода электроэнергии
- •Определение расчётных и пиковых нагрузок
- •Общие положения
- •Определение расчётной нагрузки по установленной мощности и коэффициенту спроса
- •Определение расчётной нагрузки по удельной нагрузке на единицу производственной площади
- •Определение расчётной нагрузки по удельному расходу электроэнергии на единицу продукции
- •Определение расчётной нагрузки по средней мощности и коэффициенту формы
- •Определение расчётной нагрузки по статистическому методу
- •Определение расчётной нагрузки согласно «Временным руководящим указаниям по определению электрических нагрузок промышленных предприятий»
- •Общие рекомендации по выбору метода определения расчётных нагрузок
- •Определение пиковых нагрузок
- •Учёт роста нагрузок
vk.com/club152685050 | vk.com/id446425943
Качество электрической энергии
Общие положения
Повышению качества электроэнергии уделяют большое внимание, так как качество электроэнергии может существенно влиять на расход электроэнергии, надежность систем электроснабжения (СЭС), технологический процесс производства.
Электроэнергия, как особый вид продукции, обладает определёнными показателями,
позволяющими судить о её пригодности в различных производственных процессах. Совокупности показателей свойств электроэнергии, численно характеризующих
напряжение в СЭС по частоте, действующему значению, форме кривой, симметрии и импульсным помехам, и определяющих воздействие на элементы сети, называют качеством электрической энергии.
Перечень показателей качества электрической энергии (ПКЭ), их нормативные значения, критерии оценки и методы измерений установлены ГОСТ 13109-97 «Электрическая энергия.
Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения». ГОСТ является межгосударственным стандартом, действующим в рамках СНГ. В международной практике ПКЭ оцениваются с позиций электромагнитной совместимости (ЭМС) технических средств. Под ЭМС понимают способность электрооборудования, аппаратов и приборов нормально функционировать в данной электромагнитной среде, не подвергаясь воздействию электромагнитных помех и не внося таковых в среду.
Выделяют следующие вопросы при решении задачи повышения качества электроэнергии:
-экономические вопросы включают в себя методы расчета убытков от некачественной электроэнергии в системах промышленного электроснабжения;
-математические аспекты представляют собой обоснование тех или иных методов расчёта показателей качества электроэнергии;
-технические аспекты включают в себя разработку технических средств и мероприятий, улучшающих качество электроэнергии, а также организацию системы контроля и управления качеством.
Номенклатура ПКЭ, установленная ГОСТ 13109-97, включает следующие показатели:
-установившееся отклонение напряжения δU у , %;
-размах изменения напряжения δU t , %;
-доза фликера Pt , отн. ед.;
-коэффициент искажения синусоидальности кривой напряжения KU , %;
-коэффициент -ой гармонической составляющей напряжения KU ( ) , %;
-коэффициент несимметрии напряжения по обратной последовательности K 2U , %;
-коэффициент несимметрии напряжения по нулевой последовательности K 0U , %;
-отклонение частоты f , Гц;
-длительность провала напряжения tп , с;
-коэффициент временного перенапряжения kпер.U , отн. ед.;
-импульсное напряжение U имп. , кВ.
ПКЭ разделяют на нормируемые и ненормируемые. К нормируемым относятся: δU у , δU t ,
Pt , KU , KU ( ) , K 2U , K 0U , f , tп . К не нормируемым ПКЭ относятся kпер.U , U имп. . Провалы
напряжения нормируются только по длительности, по глубине не нормируются.
На нормируемые ПКЭ установлены нормально и предельно допустимые значения. Для дозы фликера, размахов изменения напряжения и длительности провалов напряжения установлены только предельно допустимые значения.
1
vk.com/club152685050 | vk.com/id446425943
Для KU и KU ( ) нормально и предельные значения установлены в зависимости от
номинального напряжения сети: 0,38; 6-20; 35; 110-330 кВ.
Кроме того, ГОСТ 13109-97 установлена номенклатура вспомогательных параметров
электрической энергии, которые используются при определении значений некоторых ПКЭ. Вспомогательные параметры не нормируются. К ним относятся:
-для оценки колебаний напряжения − частота повторений изменений напряжения F Ut и интервал между изменениями напряжения ti ;
-для оценки провалов напряжения − глубина провала напряжения U п и частость появления провалов напряжения Fп ;
-для оценки импульсов напряжения − длительность импульса по уровню 0,5 его амплитуды tимп. 0,5 ;
-для оценки перенапряжений − длительность временного перенапряжения.
Такие ПКЭ, как δU у , δU t , Pt , KU , KU ( ) , K 2U , K 0U , f , применяют для характеристики
стационарных процессов в СЭС, а такие, как провалы напряжения, временные перенапряжения, импульсы, − для характеристик кратковременных процессов, возникающих в сети в результате коммутаций, атмосферных перенапряжений.
В соответствии с ГОСТ 13109-97 показателями качества у приёмников электроэнергии
приняты следующие:
-При питании от электрических сетей однофазного тока: отклонение частоты; отклонение напряжения; размах колебании частоты; размах изменения напряжения; коэффициент несинусоидальности напряжения.
-При питании от электрических сетей трёхфазного тока: отклонение частоты; отклонение напряжения; размах колебании частоты; размах изменения напряжения; коэффициент несинусоидальности напряжения; коэффициент несимметрии напряжении; коэффициент неуравновешенности напряжений.
-При питании от электрических сетей постоянного тока: отклонение напряжения; размах изменения напряжения; коэффициент пульсации напряжения.
Значения показателей качества электроэнергии должны находиться в допустимых пределах с интегральной вероятностью 0,95 за установленный период времени.
Для анализа качества электроэнергии в системах электроснабжения промышленных предприятий предусматривают их контроль со следующей периодичностью измерений:
1) при контроле отклонений напряжения:
а) для предприятий с пятидневной рабочей неделей и узлов энергосистем − не менее одних рабочих и одних нерабочих суток;
б) для предприятий с непрерывным производством − не менее одних суток; в) во всех остальных случаях − не менее двух рабочих и одних нерабочих суток.
2)при контроле коэффициента несинусоидальности напряжения, размаха изменения напряжения, размаха колебаний частоты:
а) в электрических сетях с электродуговыми и сталеплавильными печами − в течение 30мин в период наибольших нагрузок (период расплавки металла);
б) в электрических сетях с установками электродуговой и контактной сварки − в течение 30мин;
в) в электрических сетях с обжимными прокатными станами − в течение 10-12 циклов
прокатки; г) в электрических сетях жилых и общественных здании − в течение 1 ч в период
возникновения наибольших колебаний напряжения; д) во всех остальных случаях − в течение одних суток.
3)при контроле коэффициента несимметрии напряжений:
2

vk.com/club152685050 | vk.com/id446425943
а) в сетях с однофазными электропечами, работающими в «спокойном» режиме (печи сопротивления, электрошлакового переплава и др.) − в течение 1 ч в период наибольших
нагрузок; б) в сетях с однофазными нагрузками, работающими в резкопеременном режиме
(электродуговые сталеплавильные печи, тяговые нагрузки, электродуговая и контактная электросварка и т.д.) − в течение 1ч в период наибольших нагрузок;
в) во всех остальных случаях − в течение одних суток.
4) при контроле коэффициента неуравновешенности напряжений − в течение одних
суток.
5) при контроле коэффициента пульсации выпрямленного напряжения − в течение
30мин.
6)контроль за отклонением частоты должен быть постоянным.
Качество электроэнергии можно улучшить средствами питающей сети или применением соответствующего дополнительного оборудования на основе имеющегося опыта проектных и эксплуатационных организаций.
Часть решений, в основном обусловленных техническими требованиями, является общей и должна приниматься на основе имеющихся указаний. В других случаях учитывают специфику конкретных условий (наличие крупных ударных нагрузок может считаться особенностью предприятий).
Отклонения напряжения
Одним из важнейших показателей качества электроэнергии является действующее значение напряжения − фазного или линейного в зависимости от схемы включения потребителей. Отклонения напряжения вызывают наибольший ущерб. Основными причинами отклонений напряжения в СЭС промышленных предприятий являются изменения режимов работы электроприёмников, изменения режимов питающей энергосистемы.
В пределах одной ступени трансформации значение напряжения сети изменяется в относительно небольших пределах, поэтому с целью упрощения расчётов и достижения большей наглядности на практике пользуются понятием отклонения напряжения.
Под отклонением напряжения ( U у ) |
понимают разность |
между фактическим |
||
(действительным) значением напряжения (U у ) |
и его номинальным |
значением (U ном. ) для |
||
данной сети: |
|
|
||
U у U у U ном. . |
|
(1) |
||
Если U у выражается в процентах от U ном. , а U у и U ном. − в вольтах (киловольтах), то: |
||||
U у |
U у U ном. |
100 . |
|
(2) |
|
|
|||
|
U ном. |
|
|
|
Вычисляют значения усреднённого напряжения U у как результат N наблюдений основной |
частоты U (1)i |
или основной частоты и прямой последовательности U1(1)i |
за интервал времени |
||||
1 мин: |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
U у |
U i2 |
|
|
|
||
|
i 1 |
. |
(3) |
|||
|
N |
|||||
|
|
|
|
|
|
Число наблюдений за 1 мин должно быть не менее 18.
В России согласно ГОСТ 13109-97 в условиях нормальной работы приёмников
электроэнергии отклонение напряжения от номинального значения допускаются в следующих пределах:
а) 5 10 % на зажимах электродвигателей и аппаратов для их пуска и управления;
3