
- •Процессам и Аппаратам
- •Возникновение и развитие науки о процессах и аппаратах. Классификация процессов пищевой технологии.
- •Барботажные массообменные аппараты с колпачковыми, клапанными и чешуйчатыми тарелками. Назначение, устройство, принцип действия и область применения.
- •Основные свойства пищевых продуктов, сырья, воды, пара и влажного воздуха. Физические и теплофизические параметры.
- •Виды отстойников и их схемы. Производительность отстойника. Назначение, устройство, принцип действия и область применения.
- •Законы сохранения массы и энергии. Законы равновесия системы. Принцип движущей силы и законы переноса массы и энергии.
- •Адсорберы с подвижным слоем адсорбента. Назначение, устройство и принцип действия.
- •Современные методы исследования процессов и аппаратов. Понятие о подобии.
- •Оборудование для мокрой очистки газов. Схемы. Назначение, устройство, принцип действия и область применения.
- •Три теоремы подобия. Пи - теорема.
- •Мешалки. Назначение, устройство, принцип действия и область применения.
- •Установление вида критериев, входящих в уравнение подобия. Примеры.
- •Классификация теплообменников. Кожухотрубный теплообменник. Назначение, устройство и область применения.
- •Классификация неоднородных систем. Методы разделения неоднородных систем.
- •Конвективные сушилки: туннельные и ленточные. Назначение, устройство и принцип действия.
- •Кинематика отстаивания. Формула Стокса. Влияние формы частиц и их концентрации на процесс отстаивания.
- •Кондуктивные сушилки. Назначение, устройство и принцип действия.
- •Фильтрование. Виды фильтрования.
- •Теплообменники смешения. Назначение, устройство и область применения.
- •Теория фильтрования с образованием осадка.
- •Барабанные сушилки. Назначение, устройство и принцип действия.
- •Кристаллизаторы. Назначение, устройство и принцип действия.
- •Перемешивание. Способы перемешивания в жидкой среде.
- •Адсорберы с псевдоожиженным слоем адсорбента. Назначение, устройство и принцип действия.
- •Расчет расхода энергии при механическом перемешивании.
- •Гидроциклоны и аэроциклоны. Назначение, устройство, принцип действия и область применения.
- •Фильтры для неоднородных газовых систем. Схемы. Назначение, устройство, принцип действия и область применения.
- •Процессы нагревания и охлаждения. Теплопроводность, теплоотдача, теплопередача.
- •Электроосаждение и конструкция электрофильтра. Назначение, устройство, принцип действия и область применения.
- •Выпаривание и область его применения. Изменение свойств раствора при сгущении.
- •Способы выпаривания.
- •Сепараторы. Классификация и схемы. Назначение, устройство, область применения и принцип действия. Производительность сепаратора.
Кристаллизаторы. Назначение, устройство и принцип действия.
Кристаллизаторы по принципу действия делятся на аппараты периодического и непрерывного действия с отгонкой части растворителя и с охлаждением раствора. кристаллизация с частичной отгонкой воды осуществляется в вакуум-аппаратах.
Кристаллизаторы непрерывного действия состоят из концентратора, кристаллогенератора и камеры роста кристаллов. Конструкция аппарата должна обеспечивать интенсивную циркуляцию, препятствующую осаждению кристаллов в аппарате, улучшающую теплопередачу и обеспечивающую получение равномерных по величине кристаллов.
представлен
вакуумный кристаллизатор непрерывного
действия, применяемый в сахарном
производстве. Концентратор и
кристаллогенератор выполнены в виде
кольцевых сегментов с трубчатой
поверхностью нагрева. Концентратор
герметически отделен от других узлов
аппарата, что позволяет создавать в нем
избыточное давление, не зависимое от
давления в других частях аппарата.
Кристаллоератор верхней открытой частью
соединен
с надутфельным пространством камеры роста кристаллов. Камера роста кристаллов выполнена в виде цилиндра, снабженного типовой поверхностью нагрева. При помощи цилиндрической и радиальных перегородок она разделена на четыре секции.
Простейшие кристаллизаторы периодического действия — вертикальные цилиндрические аппараты со змеевиками и механическими мешалками. Процесс кристаллизации в них ведется одновременно с охлаждением раствора.
В пищевой технологии применяют в основном два типа кристаллизаторов: корытного типа и вращающиеся барабанные.
На рис. 23.6 показан кристаллизатор корытного типа с ленточной мешалкой. Вместо ленточной мешалки может использоваться шнековая мешалка, которая выполнена в виде бесконечного винта. Средний размер кристаллов в таких кристаллизаторах не превышает 0,5...0,6 мм.
Кристаллизаторы корытного типа довольно широко распространены в промышленности Они просты в обслуживании и надежны в работе.
Барабанные кристаллизаторы бывают с водяным и воздушным охлаждением. При воздушном охлаждении кристаллы получаются более крупными из-за низкого коэффициента теплоотдачи от раствора к воздуху, но при этом производительность кристаллизатора значительно ниже, чем при водяном охлаждении.
Барабанный кристаллизатор представляет собой вращающийся цилиндрический барабан, наклоненный по ходу раствора к горизонту (рис. 23.7). Раствор поступает с верхнего конца барабана, а кристаллы выгружаются с нижнего конца При вращении барабана кристаллизатора раствор смачивает стенки, увеличивая тем самым площадь поверхности испарения воды.
Перемешивание. Способы перемешивания в жидкой среде.
Для перемешивания жидких сред используют несколько способов: пневматический, циркуляционный, статический и механический с помощью мешалок.
Пневматическое перемешивание осуществляют с помощью сжатого газа (в большинстве случаев воздуха), пропускаемого через слой перемешиваемой жидкости. Для равномерного распределения газа в слое жидкости газ подается в смеситель через барботер. Барботер представляет собой ряд перфорированных труб, расположенных у днища смесителя по окружности или спирали.
В ряде случаев перемешивание осуществляется с помощью эжекторов.
Интенсивность перемешивания определяется количеством газа, пропускаемого в единицу времени через единицу свободной поверхности жидкости в смесителе.
Циркуляционное перемешивание осуществляют с помощью насоса, перекачивающего жидкость по замкнутой системе смеситель — насос — смеситель.
В ряде случаев вместо насосов могут применяться паровые эжекторы.
Статическое смешивание жидкостей невысокой вязкости, а также газа с жидкостью осуществляется в статических смесителях за счет кинетической энергии жидкостей или газов.
Статические смесители устанавливают в трубопроводах перед реактором или другой аппаратурой или непосредственно в реакционном аппарате.
Простейшими статическими смесителями являются устройства с винтовыми вставками различной конструкции.Статические смесители используют также при получении эмульсий.
Механическое перемешивание используют для интенсификации гидромеханических процессов (диспергирования), тепло- и массооб-менных, биохимических процессов в системах жидкость — жидкость, газ — жидкость и газ — жидкость — твердое тело. Осуществляют его с помощью различных перемешивающих устройств — мешалок. Мешалка представляет собой комбинацию лопастей, насаженных на вращающийся вал.
Все перемешивающие устройства, применяемые в пищевых производствах, можно разделить на две группы: в первую группу входят лопастные, турбинные и пропеллерные, во вторую — специальные — винтовые, шнековые, ленточные, рамные, ножевые и другие, служащие для перемешивания пластичных и сыпучих масс.
Лопастные (рис. 11.2, а, б), ленточные, якорные и шнековые мешалки относятся к тихоходным: частота их вращения составляет 30...90 мин~г, окружная скорость на конце лопасти для вязких жидкостей — 2.. .3 м/с.
Преимущества лопастных мешалок — простота устройства и невысокая стоимость.
Якорные мешалки имеют форму днища аппарата. Их применяют при перемешивании вязких сред. Эти мешалки при перемешивании очищают стенки и дно смесителя от налипающих загрязнений.
Шнековые мешалки имеют форму винта и применяются, как и ленточные, для перемешивания вязких сред.