
- •Содержание
- •Геофизические методы
- •Геоморфологические методы
- •Ненаучные и нетрадиционные методы
- •Геологические методы
- •Комплексирование несейсмических поисковых методов
- •Эффективность и стоимость несейсмических поисковых методов
- •Стратегия и тактика нефтегазопоисковых работ
- •АНАЛИТИЧЕСКИЕ МЕТОДЫ
- •Изучение поверхностных вод, снега, льда.
- •ГЕОФИЗИЧЕСКИЕ МЕТОДЫ
- •Гравиметрические методы
- •Магнитометрические методы
- •ГЕОМОРФОЛОГИЧЕСКИЕ МЕТОДЫ
vk.com/club152685050 | vk.com/id446425943
сейсморазведкой и глубоким бурением. Геологические, геохимические и часть геофизических методов (в частности, различные методы каротажа) наиболее эффективны в хорошо изученных сейсморазведкой и бурением районах, а также в районах со сложными сейсмогеологическими условиями.
АНАЛИТИЧЕСКИЕ МЕТОДЫ
Эти методы, способы и приемы: геохимические, битуминологические, гидрогеохимические, литогеохимические, изотопные, биогеохимические оперируют с пробами горных пород, почвы, воды, воздуха, растений, живых и ископаемых организмов и проводятся, как правило, в лабораторных условиях, а при применении некоторых экспресс – методов, непосредственно на местности. Существующие методы удобно разделять по объектам их приложения – образцам горных пород из обнажений и скважин, пробам почв, донных осадков, подземных и поверхностных вод, снега, льда, приземного атмосферного воздуха и растительного покрова.
Во всех случаях речь идет о выявлении аномалий того или иного показателя, связанного с нижележащей или близко по латерали расположенной залежи УВ.
Выявление углеводородных аномалий
(прямые, «живые», динамические проявления УВ).
Теоретической основой прямых поисков, начиная с Б.А.Соколова (1947г.), является представление о субвертикальной миграции УВ из расположенных ниже по разрезу УВ – залежей по порам, трещинам, разломам, а также путям диффузии – вплоть до дневной поверхности, на которой и вблизи которой формируются УВ – аномалии. Аномалией является превышение содержания УВ (%) над некоторым фоном, фон может колебаться от первых десятков процентов до нуля, в зависимости от конкретных условий, устанавливаемых эмпирически. На фоне существующих оценок (мм/год – сотни метров/год) наблюдения за искусственными газонефтехранилищами, свидетельствуют об огромных скоростях миграции УВ из залежей, именно сотни метров за считанные месяцы, по крайней мере, из неглубоких газохранилищ (Tedesco, 1999г.).
Изучение проб горных пород из обнажений и скважин.
Общеизвестными методами и способами обнаружения УВ – аномалий являются газовый каротаж (Абрамович, 1948г.), газовая съемка (Соколов, 1947г.), различные приемы извлечения битумов, нефти и газа из образцов керна, шлама, пород из обнажений (хлороформенная, спиртобензольная, петролейно-эфирная экстракции, термовакуумная и химическая дегазация, вакуумная декриптометрия и другие).
Авторские свидетельства отличаются лишь объектами приложения: выявление эпигенетических УВ в углях, извлечения газов из долеритов, вторичного галита, изучения шлама взрывных сейсмоскважин, дегазация доломитовой составляющей карбонатов, дегазация мерзлых пород после
4
vk.com/club152685050 | vk.com/id446425943
взрывов, раздельно из низов и верхов мерзлой толщи, после промерзания и перед началом оттаивания. Предлагаемые способы отличаются и интерпретацией полученных результатов.
Все названные выше процедуры преследуют цель – выявление УВ - аномалий или аномалий различных отношений на каком-то относительно низком фоне. В ряде способов приводятся конкретные значения, свойственные УВ – аномалиям. При отношении Сорг. к ТУВ < 0,5, а метана к гелию > 0,5 ниже по разрезу прогнозируется УВ – залежь. Отношения метаново - нафтеновых УВ к высоко молекулярным, в образцах шлама при значениях около 2,0 и 5,0 свидетельствуют о продуктивности данного интервала, тогда как при значениях 13,0 и 21,0 интервал оценивается как непродуктивный. Ю.И.Пиковский (1993) различает среди природных потоков УВ биосферные, литосферные и глубинные.
Изучение почвенного слоя.
Большинство предлагаемых способов, по существу, является модификациями газовой съемки (Соколов, 1947г.). Усовершенствования связаны с процедурой извлечения газа и интерпретацией результатов. Предлагаются: повторные газовые съемки после землетрясений, отбор газа из почвы после работы вибросейса, непрерывный отбор газа из почвы специальным пробоотборником с движущегося автомобиля, причем выделение газа интенсифицируется рыхлителем, сорбция УВ на ферромагнитной проволоке, покрытой активированным углем с последующей (через 1-2 недели) термической десорбцией газа («метод К-V отпечатков пальцев», Klushman, 1986), обработка фракций почвы < 0 на спектрофотофлюориметре (Carrol, 1984), изучение в почвах содержания ароматических УВ (нафтален, фенантрен, антрацен), устойчивых к бактериальному воздействию (Calhoun, Burrows, 1992), водородный стриппинг – экстракция УВ водородом из разжиженных соляным раствором почв (Luan, Cheng, 1991), гексаном, метанолом и дистиллированной водой с последующим анализом.
Изучение донных осадков рек, озер, морей.
Во ВНИГРИ разработан универсальный донный пробоотборник и набор экспресс анализов в полевой лаборатории (метан и гомологи, характерные микроэлементы и биогеохимические исследования). (Астафьев и др., 1989). Широко апробирован метод «ворошения донных осадков рек и озер» («метод принудительной дегазации» - МПД) с последующим анализом отобранного газа на УВ, гелий и изотопный состав углерода метана. В частности, на Сибирской платформе четкие аномалии получены над всеми известными месторождениями нефти и газа, пересекаемыми реками, и в процессе работ обнаружено несколько десятков ярких аномалий в Красноярском крае, Иркутской области и республике Саха (Арчегов, Филатов, О.А.Бабошина и др., 1978 - 1993 ).
Поисковыми признаками возможных месторождений УВ являются также скопления газогидратов метана и сопутствующие им явления
5
vk.com/club152685050 | vk.com/id446425943
(грязевой диапиризм, осложнения при бурении скважин) проанализированные для территорий Мексиканского залива и Южного Каспия (Bagirov, Lercha, 1997).
Изучение подземных вод.
Индикаторами близости углеводородных залежей (по латерали) считаются бензол и толуол (США). При изучении этих и других компонентов рекомендуется использовать отношения толуол/бензол и ксилол/бензол, обработку проб воды циклогексаном, изучение ароматических УВ с 4-6 конденсированными кольцами (пирен, бензпирен). Установлена прямая связь содержания бензола в подземных водах непродуктивных скважин с расстоянием до ближайшей залежи УВ (Burtell и др., 1996). Прогноз близости составил около 50% на расстоянии до 20 км.
Индикаторами близости залежи УВ являются органические кислоты (США). Установлено возрастание газонасыщенности, смол, асфальтенов, фенолов, нафтенов, ТУ в направлении залежей УВ. Количественными показателями близости залежи УВ от непродуктивной скважины называются следующие: отношение содержания жирных кислот С16+С18/ С17<1.6 свидетельствует о нефтеносности пласта (США), содержание хлороформенного битумоида > 25мг/л, соотношение насыщенных и ароматических УВ от 1,0 до 3,0 предсказывают близость залежи, установлено, что вблизи нефтяных залежей Предкавказья в подземных водах содержится > 3% этана и > 1% ТУ, а вблизи газовых - > 1% этана. Хлороформенный экстракт глинистого раствора позволяет предсказывать продуктивность и качество вскрытых бурением пластов до испытания .
Изучение поверхностных вод, снега, льда.
Предлагаемые поисковые способы, сводятся к извлечению водорастворённых УВ, лед и снег предварительно растапливают. В Западной Сибири опробован полевой экспресс – анализ проб снега, отбираемых на вездеходе через первые сотни метров маршрута с использованием старых просек, главным показателем объявлено содержание гомологов метана и ртути.
Изучение атмосферного воздуха.
Существующие пока способы, сводятся к газовой съёмке приповерхностного воздуха, с помощью высокочувствительных приборов, установленных на наземном транспорте или низко летающих аппаратах. Рекомендуются отечественные лазерные газоанализаторы («Искатель», «Луч»), микроволновый спектрометр, гамма – спектрометры. В зоне многолетнемёрзлых пород газовая съёмка приземного воздуха рекомендуется после полного оттаивания сезонно – талого слоя. В приземном воздухе, наряду с метаном, определяются содержания УВ – окисляющих бактерий. Эти способы привлекательны своей экспрессивностью и большой производительностью.
6
vk.com/club152685050 | vk.com/id446425943
Изучение растительного покрова.
Предлагается дегазация листьев деревьев с последующим определением УВ – состава извлеченного газа и отбор газа специальным шприцем из стволов деревьев. Ю.И.Пиковский (1993) оценивает «вклад» различных организмов в биосферные потоки УВ: дыхание растений, особенно водорослей – до 2% от общей массы УВ, животные (особенно морские) – до 3,5%, почвы, торфа, бактерий – незначительное количество УВ. В целом биосфера генерирует рассеянный поток, создающий общий невысокий фон. Этот фон и отдельные всплески его должны учитываться и учитываются при проведении различных геохимических съёмок.
Выявление аномалий, обусловленных влиянием УВ на вмещающую среду и биосферу
(косвенные, «окаменелые», статические признаки УВ)
Теоретической основой этой группы методов и способов является учет всевозможных эффектов влияния мигрирующих УВ на окружающую подземную и приповерхностную среду. Субвертикальная миграция (просачивание) УВ от залежи к поверхности приводит в приповерхностных условиях: к биохимической деградации УВ с выделением H2S и CO2; H2S порождает диагенетические магнитные минералы и способствует накоплению урана; СО2 обусловливает вторичную минерализацию (карбонизацию) пород и обеднение почв калием (образуются хорошо растворимые соли К); на дневной поверхности в почвах образуются углеводородные, магнитные, радиационные и геоморфологические аномалии.
Восстановительная обстановка, созданная УВ, способствует преобразованию немагнитных окислов железа в почве в магнетит. Выщелачивание калия может приводить к образованию отрицательных радиометрических аномалий над залежами УВ, однако, усиленная сульфатизация, способствующая накоплению урана, может, иногда, компенсировать калиевый, отрицательный эффект.
Карбонизация почв приводит к геоморфологическим аномалиям. Из-за цементации пород возникают относительно приподнятые (эрозионные) формы, обуславливающие центробежный рисунок дренажной сети, легко улавливаемый на аэрофотоснимках. Карбонизация создаёт на аэрокосмических снимках светлые тональные пятна – аномалии в безлесных областях, поскольку в лесах изменения фототона часто связаны с видовым составом растительности.
Изучение проб горных пород из скважин и обнажений.
Мигрирующие УВ изменяют, состав глинистых пород – происходит обогащение их монтмориллонитом и смешанно - слойными минералами (Шилин, 1987), снижаются значения теплопроводности глин. Под влиянием УВ изменяется отражательная способность высушенных фракций из керна и шлама (0,01-0,001 мм и < 0,25 мм) в разных частях
7
vk.com/club152685050 | vk.com/id446425943
спектра, причем о нижележащей залежи свидетельствуют повышенные яркости и просветления. Изменяется также магнитная восприимчивость фракции < 0,25 мм до и после прокаливания при температурах 397 – 578о С.
В карбонатных породах о положении залежей УВ могут свидетельствовать аномальные содержания магнезита и родохрозита, а также обильные доломитовые сфероиды в цементе пород (Gunatilaca, 1989). Считается, что мигрировавшие УВ изменяли изотопный состав вмещающих пород. В направлении залежи облегчается состав изотопов С, О, S, в образцах кальцита – О18/О17, утяжеляется в сторону залежи изотопный состав серы в пирите, в кремнистых породах индикатором залежи УВ рекомендуется отношение изотопов Si28/Si29 + Si30. Обнаруживаются связи микроэлементного состава вмещающих пород с УВ – залежами. Ce+Nd > 0,5, повышенные содержания Br во вторичном галите, аномальные содержания Na, Se, Co, As, Sb, Ng – в пирите из серого шлиха пород, высокие содержания Cu в фракции < 0,05 мм из подпочвенного песчаного горизонта .Ю.И.Пиковский объявляет ртуть геохимическим индикатором глубинных источников УВ.
Изучение почвенного слоя.
Под влиянием мигрирующих УВ в приповерхностной окислительной обстановке происходит обогащение почвенного слоя различными минералами и соединениями. В их числе: йодистые соединения, последние, в отличие от УВ, очень устойчивы к бактериальному воздействию и дольше хранят след породившей их залежи УВ; вторичные карбонаты; титанистые минералы в тяжелой фракции почв.
За рубежом широко рекламируется «способ d С»: фракция < 100мк из почвы нагревается до 500-600оС в атмосфере азота. Количество СО2, выделяющееся при разложении вторичных, обусловленных влиянием
мигрирующих УВ, карбонатов и есть показатель «d С», по аномалиям которого судят о положении залежей УВ.
Изучение донных осадков.
В пробах донных осадков выявляются аномалии содержания V, B, Mn. В донных осадках Мексиканского залива над залежами УВ установлено повышенное содержание аутигенных карбонатов с изотопно легким составом углерода. С этим же явлением связывают твердые карбонатные включения и постройки со специфическим набором фауны.
Изучение подземных вод.
При приближении к залежам УВ, изменяется содержание и соотношения различных микроэлементов: повышается содержание V, Ti, Hg, Cr, Se, Ni, Co, Sr, Ra, B, Br, растет отношение тяжелых изотопов Н и , отношение изотопов Br превышает 1.03, уменьшается отношение ионов Са и Mg, содержание К становится меньше равновесного с аммонием. Общепринятым региональным признаком возможной нефтегазоносности являются высокие содержания J и Br в подземных водах непродуктивных скважин.
8
vk.com/club152685050 | vk.com/id446425943
Изучение атмосферного воздуха.
С возможными залежами УВ связывают: аномальные содержания в воздухе металлоорганических соединений метана, СО2 и SO2 (США), ртути (Канада), гелия и азота при соотношении He/N 0,8-1,3. Возбуждение флюоресценции паров J, Br и Hg в атмосфере лазерными лучами под разными углами позволяет в точках пересечения лучей выявлять аномалии, связанные с залежами УВ. В измерительных ячейках, расположенных по профилям, охлаждением конденсируют атмосферную влагу и по концентрациям растворённых в ней элементов определяют положения залежи УВ.
Изучение растительного покрова.
Большинство существующих способов сводится к определению содержания различных микроэлементов в водных и кислотных вытяжках и в золе растений, а также аномалий изотопного состава С13. Концентрации таких микроэлементов варьируют в зависимости от видов растений (хвойные, лиственные), длины их корней, экологической обстановки (болото, лес, степь), но в целом аномальные их содержания обычно согласуются с таковыми в горных породах и почвах. Наиболее частыми индикаторами называются Fe, Mn, Ni, Cu и другие.
Изучение УВ окисляющих и потребляющих бактерий
Существующие биохимические способы поисков залежей связаны, в основном, с анализом содержания в различных средах, породах, почвах, воде, снеге, воздухе, углеводородоокисляющих бактерий.
-Бактериалогическая съемка МОST (Tucker и др., 1994), нацеленная на выявление специфического комплекса микроорганизмов, указывающих на присутствие легких УВ. Применение MOST на разрабатываемых месторождениях позволяет выявлять неоднородность резервуара и дополнительные, мелкие залежи УВ: вблизи работающих скважин содержание УВ – бактерий минимально, что позволяет картировать конфигурацию наилучших (дренируемых скважиной) коллекторов. В тоже время, в межскважинных пространствах обнаруживаются интенсивные бактериальные аномалии, которые интерпретируются как пропущенные при бурении продуктивные участки.
-Анализ бактериального белка в почве. При соответствующих съёмках существует возможность попадания в пассивную фазу жизнедеятельности УВ – бактерий, но от любой активной фазы в почвах накапливается бактериальный белок, аномальные содержания которого и являются индикатором положения залежей УВ.
-В США разработан «Геомикробиологический метод поисков рудных тел и залежей нефти и газа». В породах, по данным геохимических съёмок, содержащих металлы или УВ, замеряется параметр «выживаемости» соответствующих бактерий. При поисках УВ – залежей изучаются выживаемость бактерий, потребляющих пентан и гексан, инкубационный период для них соответствует 3-10 минут при 15-20оС.
Изучение фауны и микрофауны.
9