
Практикум
.pdfu *==+ d^M d k
u **=* 7=\ > k i d^M k
u † B de
u *==+ 7 .@+#; ;A A&A" ! " A"!!% H ! : !V7!
; ! U 7! =+ +*\. j+=-?; *.+\*
. > X
:=*1 + Z=*+ . ! 7 7! : :.b 5#:A % :7 :.b 5#:A7% X
: 6 #: % 6 #:7%V !
;:# !% > :#7!% =: 1. 6 j+=-?; *.+\*
. > u
$ # 7%
TZ 5. #7 $ V .- % X #HU1 $% :@ :.b 5#:A$%
: 6 #:7% 6 #:@% U !$
.5 .
7 $
. > $ # 7%
H H "
. >
u
:=*1 + 5= 6 *==+ $
:=*1 + Z=*+ .**=* 7=\ > 7 $ 0+.* + = H :=*1 + Z=*+
\
$ 3 3 3 3 ( ( ( (" (
( 3 3 3 3 % (
! .#% 3 f (x) = 0 [a, b] " 5 !
1. |
f = x3 − 2x − 5, |
[0, 3], |
2. |
f = x3 − 0.001, |
|
|
[−1, 1], |
3. |
f = ln(x + 2/3), |
[0, 1], |
4. |
f = QRSB(x − 2) |x − 2|, |
[1, 4], |
||
5. |
f = arctan(x) − π3 , |
[0, 5], |
6. |
f = 1/(x − π), |
[0, 5]. |
, 1 (
$ / 0 ( 3 3 3 4 3
x = F (x), |
c Sd |
3 / F : [a, b] → [a, b] - / 3 F (x) / ( |
|
q = sup |F (x)| < 1, |
c d |
x [a,b] |
|
4 x 3 cSd ( 0 0
/ 0 /
x = lim xn, xn+1 = F (xn), |
c Wd |
n→∞ |
|
0 x0 r 0 3 [a, b] |
$ |
/ % ( 5" ( Z
( ( (
. ( ( / 5 ny6ƒyt" Z 35Z 5 4
3 c Sd ( ( 0 % /
:\ @+ = EHA-A .**AmF :$-+ #lA-!A+=5A1$"% u ' x O
u l y^ i{ #"%A Bx i
u -! M de x Mi d x { u +=5 x M Bxe
u 1$" iB de ^Bx M Bd x { u ' M O
[
u H M Bd d ' x {
u - d^M d k
u .** k i d^M k
u m BB M x { m#"% -!
:=* H O1 $" m#H% :.b 5#lAm#H "%%
.** 7 #m#H% m#H "%% *.5.** .** # 7 #m#H%% .- % - m#H%
:#.**U+=5% Y #*.5.**U+=5%A7*. H . >
. >
: H 1 $"
> -# ;1 $ 1\1 \17.* =: +.* + = .$@..>.>;%
. > m m;
(
EHA-A .**AmF : $-+#;@= ;A! (A". (A&!%
5 0 / : $-+ 3 3 x = cos(x)
! .#& : x = 0.73908 " 10−5
k = 29 !
. ( ( / f (x) = 2x − 3 − ln(x)"
3 f (x) = 0 - 0
f / " 5 5 3 3 3 f (x) = 0"
0 % C } C } S Y c ( 3 jd
] f 4 5 ( 0 ( ( 0
/ ( " 5Z % 4
•0 0 4 ( f (x) = 0 x = F (x) c Sd" 4 (
F (x) = (ln(x) + 3)/2
[S
•( 3" |F (x)| < 1 c d" 3 % ( ( / " 0 3 x = 1.8 V 3 f 0 / |F (x)|
•( 4 f (x) = 0 x = F (x) 5
10−8 " 0 3 / 5 : $-+
+ 3" c d 0 3 3
3 x = 0.05 f ( " 3 " " % (
0 5 / 5 ˜ |
(x) |
c Sd 3 ( |
||
|
F |
|
|
|
% 3 f (x) = 0 |
! 4 ( f ˜ |
(x) = exp(2x − 3) |
||
|
|
F |
% ( 3 f /
5 10−8
! .#+ & " 10−8 |
: *C-+ |
||
"5 ! / |
|
|
|
1. |
F (x) = cos(sin(x)); |
2. |
F (x) = x2 − sin(x + 0.15); |
3. |
F (x) = x5 − 3x3 − 2x2 + 2; |
4. |
F (x) = tan(x). |
( :
! .#. T *C 1+ : xn
( q = 1 |
|||||
; |
√ |
|
|
|
|
|
x = F (x) = 2 |
x − 1 |
|
x = 2 |
|
! : " 2
|xn − xn+1| ! xn : " x J
, 1 +'$
V 3 4 3 3 f (x) = 0" f C1 " ( 0 ( ( 0
% / cSd 3 / F (x) = x |
− |
f (x)/f (x) |
|
||
/ 0 5 3 |
|
|
|
||
|
|
|
|
||
xj+1 = xj − |
f (xj ) |
|
|||
|
. |
c Rd |
|||
f (xj ) |
$ 3" cRd 0 3
/ f (x)" 0 xj ! f 0 / "
[

( cRd 5 Z ( ( % - / 3 f C2" Z 3" |F (x)| < 1" ( ' 5
% 3 f
' 0 4 3 0 ( " 3
3 3 f (x) = 0 Z 0 "
3 ( - x 3"
τk = |xk+1 − x | 0 3 3
δf (xk ) τk ≈ f (x ) ,
δf (xk ) 0 4 3 0 / f xk ) ( (" 0 3 ( 0 3 3 0 4 5 ( 3 ] ( 4
3" ( 4 0
xk 0 0 0 3" 0 4 %
/ 3% 0 % 3 0 3"
0 % ( 3 0 ( 0 4 3
V 3 0 % % ( ( ' 5 "
3 % r " 3 % 3 3
% % ( ( % " ( 0
x = x ( s ! f ( /
0 (
xk+1 = xk − sf (xk ) .
(( " 5Z 3 ( ' 5 " ( 0
0 (( : $-+ T 3 5 5 3 % ( 0
0 5 / ‡l
:\ @+ = EHA-A .**AmF : $-+ #lA‡lA-!A+=5A1 $"%
( (
m#H% m#H "% :.b 5#lAm#H "%% :.b 5#‡lAm#H "%%
! .#/ 3 : 3 "
( : - ' 4- 0
[W

!
3 " ' )
# *UVWWRQ+ < !
X 5 " 3 "
! .#2 3 : 3 " ( : *4 7+ ' 4 7 0
!
! 3 "
! .#6 & 3 "
5 ( 3 "
7 ' 4- E ) x = 2
3 " ) "
( )
! -66
, 1 %
$ ' 5 % 3 " 3
0 / " 5 0 3 0 5 0 ( ] 3 0 " ( (
5" 5 0 ( 0 Z ( / 3( f ( /
0 / 0
x |
= x |
j − |
f |
xj − xj−1 |
, |
c d |
j+1 |
|
|
j fj − fj−1 |
|
fj = f (xj ) 3 % ( ( Z % " ( ( |
|||||
' 5 " 3 |
|
√ |
|
|
|
( |
5 + 1)/2 ≈ 1.62 |
||||
|
|
3 " " ( Z %
3 f ( ' 5 b / (
0 ( ( 3 3 / 0 "
0 ( ( 4 5" (
/ " 0 ( 4 ( ' 5
(3 4 ( ( Z %" ( 4
[R
( ' 5 0 % 3 / " ( Z % r
" 0 ( 4 ( ' 5 ( ( 5
% (
|xk+1 − x | ≈ N(xk − x )2,
3 % 4 ( ( Z % ( (
|xk+2 − x | ≈ N1.62 (xk − x )2.618.
) ( ( ( ( Z % (0 5 % ( - 0 3 0 / " (
/ " ( f ( ( ( Z
(
! .#; 3 : 5 ( : ' 4- ' 4 4 * +
! .#"< :
5 : !
! 3 " 5 log(|xj − x |) j
' 4- ' 4 4 * + & 9
! .#"" ; 5 7 ' 4- 3 "
, , 1
$ 0 3 3 3 %4 ( / ( ( (" (
0 3 xj+1 0 3 3 0 ( 0 Z (
( xj " xj−1 xj−2 / 3 f (x) ( 3 3 0 " 0 % 3Z
(xj , fj )" (xj−1, fj−1) (xj−1, fj−1) ) 3 0 ( 0
( ' 5
p2(x) = fj + fj−1,j (x − xj ) + fj−2,j−1,j (x − xj )(x − xj−1). |
c [d |
[ |
|

) xj+1 0 3 3 f 0 ( "
0 ( 5 xj 3 % ( ( 4 " ( (
Z %" " ( ( ' 5
5Z 5 (
H ! |
|
|
TZ 5. |
# 7 #@ 7%V .- 7 #@%% X #HU"!!% |
|
$ -=5, +.*-#E:# %A:#7%A:#@%FAE A7A@FA!% |
||
|
7 |
|
7 |
|
@ |
@ |
$ |
|
H |
H " |
|
. > |
|
|
T ( f (a)" f (b) f (c) "
√
' 0 ( " 33 0 ( 0 2" f (x) = x2" 0 % 3% a = −2g b = 0g c = 2 ( 0 ( f (a) = f (c)
( 0 # " a = −2.001g b = 0g c = 1.999 0 ( 0 ( 4 ( 0 ( x2 = 500 ! Z ( ( " ( % ( ( " (
0 % 0 3
! .#"% 3 :
( : ' 4 1 *
+ ' 4 O "
,- 2
( / 3 0 / 3
l8 o#la AR!% Z Z / la
R! ! 0 (( 0 3 ( / 3 (
Z %" ( 0 0 3/ ( 3 0 0 ( 0 3 5 0 / " 4
[[

! .#"& "5 )
! /
:/.*=# 5 .#;$ @= #$%;%A"%
0.7391
! .#"+ 3 5
f (x) = 816x3 − 3835x2 + 6000x − 3125 .
5 " :
0 E
)
! .#". # E
E − e sin E = M .
' e ) ! *) + E ) ! M
. : ) E
∞ 1
E = M + 2 m=1 m Jm(me) sin(mM)
Jm(x) ! Y m
" 7. .52#1A$%
3 E M = 24.851090 e = 0.1 5 " !
:/.*= 5 " Z Z 0
0 : Z Z J
! 3 / 3 oo j#n% 3 Z (0
0 (
C(1) XN + ... + C(N) X + C(N + 1),
C ( N + 1 (0 ( 0 3 /
*==+ #E"A!A"F% 3 0 + 1.0000i 0 − 1.0000i
! ( ( / % ( 3 3 3 (
3 (0 % / " Z % Z
! 0 ( ( ( ( 0 3 ( ' 5
3 % 3 3 z3 − 1 = 0
[X
:\ @+ = .T+= #$!A,!A %
uD x ce€x d ' i ^ /P "
u |
$!A,! |
M de d /! $! ,! |
||
u |
|
ˆ |
M Bd x { |
|
u |
Bd |
|
! x B' x |
"! x { x ix |
u @5:
@=5=* E;H76*@1,;F@=5=* /.#@=5=* A % u
$ #E " ( " ( " ( " (F% $ 1 \ 5 Z=5> ==5$ E" ( (F =5, E! G333 G333F -5=+# =5$A =5,A;*$;%
u
: U ! "! . > u
b |
E$! ,!F |
|
|
:-* +:#;Q |
-= +Q Q ;% |
u |
|
|
:=* |
!O |
|
|
-5=+#b#"%Ab# %AE@=5=* #1=># A @=5=* % "%A;=;F% |
|
|
:-* +:#"A;u > |
;A % |
|
:-* +:#"A;u( &: |
;Ab;% |
|
:-* +:#"A;Q ;% |
|
|
: U ! > -#;m*. , H., += @= + \. ;%A - \ . . > |
$ |
b#"% , |
b# % |
|
T E$P |
|
$ ,P " $P , ,P F |
|
E $P ,P A 3 $ , 3 $ ,A $P ,P F |
|||
b |
b |
QT |
|
. >
! .#"/ 2 !
3 "
[Y