Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Практикум

.pdf
Скачиваний:
62
Добавлен:
25.04.2014
Размер:
725.99 Кб
Скачать

u *==+ d^M d k

u **=* 7=\ > k i d^M k

u † B de

u *==+ 7 .@+#; ;A A&A" ! " A"!!% H ! : !V7!

; ! U 7! =+ +*\. j+=-?; *.+\*

. > X

:=*1 + Z=*+ . ! 7 7! : :.b 5#:A % :7 :.b 5#:A7% X

: 6 #: % 6 #:7%V !

;:# !% > :#7!% =: 1. 6 j+=-?; *.+\*

. > u

$ # 7%

TZ 5. #7 $ V .- % X #HU1 $% :@ :.b 5#:A$%

: 6 #:7% 6 #:@% U !$

.5 .

7 $

. > $ # 7%

H H "

. >

u

:=*1 + 5= 6 *==+ $

:=*1 + Z=*+ .**=* 7=\ > 7 $ 0+.* + = H :=*1 + Z=*+

\

$ 3 3 3 3 ( ( ( (" (

( 3 3 3 3 % (

! .#% 3 f (x) = 0 [a, b] " 5 !

1.

f = x3 2x − 5,

[0, 3],

2.

f = x3 0.001,

 

 

[1, 1],

3.

f = ln(x + 2/3),

[0, 1],

4.

f = QRSB(x − 2) |x − 2|,

[1, 4],

5.

f = arctan(x) π3 ,

[0, 5],

6.

f = 1/(x − π),

[0, 5].

, 1 (

$ / 0 ( 3 3 3 4 3

x = F (x),

c Sd

3 / F : [a, b] [a, b] - / 3 F (x) / (

 

q = sup |F (x)| < 1,

c d

x [a,b]

 

4 x 3 cSd ( 0 0

/ 0 /

x = lim xn, xn+1 = F (xn),

c Wd

n→∞

 

0 x0 r 0 3 [a, b]

$

/ % ( 5" ( Z

( ( (

. ( ( / 5 ny6ƒyt" Z 35Z 5 4

3 c Sd ( ( 0 % /

:\ @+ = EHA-A .**AmF :$-+ #lA-!A+=5A1$"% u ' x O

u l y^ i{ #"%A Bx i

u -! M de x Mi d x { u +=5 x M Bxe

u 1$" iB de ^Bx M Bd x { u ' M O

[

u H M Bd d ' x {

u - d^M d k

u .** k i d^M k

u m BB M x { m#"% -!

:=* H O1 $" m#H% :.b 5#lAm#H "%%

.** 7 #m#H% m#H "%% *.5.** .** # 7 #m#H%% .- % - m#H%

:#.**U+=5% Y #*.5.**U+=5%A7*. H . >

. >

: H 1 $"

> -# ;1 $ 1\1 \17.* =: +.* + = .$@..>.>;%

. > m m;

(

EHA-A .**AmF : $-+#;@= ;A! (A". (A&!%

5 0 / : $-+ 3 3 x = cos(x)

! .#& : x = 0.73908 " 105

k = 29 !

. ( ( / f (x) = 2x − 3 ln(x)"

3 f (x) = 0 - 0

f / " 5 5 3 3 3 f (x) = 0"

0 % C } C } S Y c ( 3 jd

] f 4 5 ( 0 ( ( 0

/ ( " 5Z % 4

0 0 4 ( f (x) = 0 x = F (x) c Sd" 4 (

F (x) = (ln(x) + 3)/2

[S

( 3" |F (x)| < 1 c d" 3 % ( ( / " 0 3 x = 1.8 V 3 f 0 / |F (x)|

( 4 f (x) = 0 x = F (x) 5

108 " 0 3 / 5 : $-+

+ 3" c d 0 3 3

3 x = 0.05 f ( " 3 " " % (

0 5 / 5 ˜

(x)

c Sd 3 (

 

F

 

 

% 3 f (x) = 0

! 4 ( f ˜

(x) = exp(2x − 3)

 

 

F

% ( 3 f /

5 108

! .#+ & " 108

: *C-+

"5 ! /

 

 

1.

F (x) = cos(sin(x));

2.

F (x) = x2 sin(x + 0.15);

3.

F (x) = x5 3x3 2x2 + 2;

4.

F (x) = tan(x).

( :

! .#. T *C 1+ : xn

( q = 1

;

 

 

 

 

 

x = F (x) = 2

x − 1

 

x = 2

 

! : " 2

|xn − xn+1| ! xn : " x J

, 1 +'$

V 3 4 3 3 f (x) = 0" f C1 " ( 0 ( ( 0

% / cSd 3 / F (x) = x

f (x)/f (x)

 

/ 0 5 3

 

 

 

 

 

 

 

xj+1 = xj

f (xj )

 

 

.

c Rd

f (xj )

$ 3" cRd 0 3

/ f (x)" 0 xj ! f 0 / "

[

f (xk)

( cRd 5 Z ( ( % - / 3 f C2" Z 3" |F (x)| < 1" ( ' 5

% 3 f

' 0 4 3 0 ( " 3

3 3 f (x) = 0 Z 0 "

3 ( - x 3"

τk = |xk+1 − x | 0 3 3

δf (xk ) τk f (x ) ,

δf (xk ) 0 4 3 0 / f xk ) ( (" 0 3 ( 0 3 3 0 4 5 ( 3 ] ( 4

3" ( 4 0

xk 0 0 0 3" 0 4 %

/ 3% 0 % 3 0 3"

0 % ( 3 0 ( 0 4 3

V 3 0 % % ( ( ' 5 "

3 % r " 3 % 3 3

% % ( ( % " ( 0

x = x ( s ! f ( /

0 (

xk+1 = xk − sf (xk ) .

(( " 5Z 3 ( ' 5 " ( 0

0 (( : $-+ T 3 5 5 3 % ( 0

0 5 / ‡l

:\ @+ = EHA-A .**AmF : $-+ #lA‡lA-!A+=5A1 $"%

( (

m#H% m#H "% :.b 5#lAm#H "%% :.b 5#‡lAm#H "%%

! .#/ 3 : 3 "

( : - ' 4- 0

[W

!

3 " ' )

# *UVWWRQ+ < !

X 5 " 3 "

! .#2 3 : 3 " ( : *4 7+ ' 4 7 0

!

! 3 "

! .#6 & 3 "

5 ( 3 "

7 ' 4- E ) x = 2

3 " ) "

( )

! -66

, 1 %

$ ' 5 % 3 " 3

0 / " 5 0 3 0 5 0 ( ] 3 0 " ( (

5" 5 0 ( 0 Z ( / 3( f ( /

0 / 0

x

= x

j

f

xj xj−1

,

c d

j+1

 

 

j fj − fj−1

 

fj = f (xj ) 3 % ( ( Z % " ( (

' 5 " 3

 

 

 

(

5 + 1)/2 1.62

 

 

3 " " ( Z %

3 f ( ' 5 b / (

0 ( ( 3 3 / 0 "

0 ( ( 4 5" (

/ " 0 ( 4 ( ' 5

(3 4 ( ( Z %" ( 4

[R

( ' 5 0 % 3 / " ( Z % r

" 0 ( 4 ( ' 5 ( ( 5

% (

|xk+1 − x | ≈ N(xk − x )2,

3 % 4 ( ( Z % ( (

|xk+2 − x | ≈ N1.62 (xk − x )2.618.

) ( ( ( ( Z % (0 5 % ( - 0 3 0 / " (

/ " ( f ( ( ( Z

(

! .#; 3 : 5 ( : ' 4- ' 4 4 * +

! .#"< :

5 : !

! 3 " 5 log(|xj − x |) j

' 4- ' 4 4 * + & 9

! .#"" ; 5 7 ' 4- 3 "

, , 1

$ 0 3 3 3 %4 ( / ( ( (" (

0 3 xj+1 0 3 3 0 ( 0 Z (

( xj " xj−1 xj−2 / 3 f (x) ( 3 3 0 " 0 % 3Z

(xj , fj )" (xj−1, fj−1) (xj−1, fj−1) ) 3 0 ( 0

( ' 5

p2(x) = fj + fj−1,j (x − xj ) + fj−2,j−1,j (x − xj )(x − xj−1).

c [d

[

 

) xj+1 0 3 3 f 0 ( "

0 ( 5 xj 3 % ( ( 4 " ( (

Z %" " ( ( ' 5

5Z 5 (

H !

 

TZ 5.

# 7 #@ 7%V .- 7 #@%% X #HU"!!%

$ -=5, +.*-#E:# %A:#7%A:#@%FAE A7A@FA!%

 

7

7

 

@

@

$

H

H "

. >

 

 

T ( f (a)" f (b) f (c) "

' 0 ( " 33 0 ( 0 2" f (x) = x2" 0 % 3% a = 2g b = 0g c = 2 ( 0 ( f (a) = f (c)

( 0 # " a = 2.001g b = 0g c = 1.999 0 ( 0 ( 4 ( 0 ( x2 = 500 ! Z ( ( " ( % ( ( " (

0 % 0 3

! .#"% 3 :

( : ' 4 1 *

+ ' 4 O "

,- 2

( / 3 0 / 3

l8 o#la AR!% Z Z / la

R! ! 0 (( 0 3 ( / 3 (

Z %" ( 0 0 3/ ( 3 0 0 ( 0 3 5 0 / " 4

[[

! .#"& "5 )

! /

:/.*=# 5 .#;$ @= #$%;%A"%

0.7391

! .#"+ 3 5

f (x) = 816x3 3835x2 + 6000x − 3125 .

5 " :

0 E

)

! .#". # E

E − e sin E = M .

' e ) ! *) + E ) ! M

. : ) E

1

E = M + 2 m=1 m Jm(me) sin(mM)

Jm(x) ! Y m

" 7. .52#1A$%

3 E M = 24.851090 e = 0.1 5 " !

:/.*= 5 " Z Z 0

0 : Z Z J

! 3 / 3 oo j#n% 3 Z (0

0 (

C(1) XN + ... + C(N) X + C(N + 1),

C ( N + 1 (0 ( 0 3 /

*==+ #E"A!A"F% 3 0 + 1.0000i 0 1.0000i

! ( ( / % ( 3 3 3 (

3 (0 % / " Z % Z

! 0 ( ( ( ( 0 3 ( ' 5

3 % 3 3 z3 1 = 0

[X

:\ @+ = .T+= #$!A,!A %

uD x ce€x d ' i ^ /P "

u

$!A,!

M de d /! $! ,!

u

 

ˆ

M Bd x {

 

u

Bd

 

! x B' x

"! x { x ix

u @5:

@=5=* E;H76*@1,;F@=5=* /.#@=5=* A % u

$ #E " ( " ( " ( " (F% $ 1 \ 5 Z=5> ==5$ E" ( (F =5, E! G333 G333F -5=+# =5$A =5,A;*$;%

u

: U ! "! . > u

b

E$! ,!F

 

 

:-* +:#;Q

-= +Q Q ;%

u

 

 

:=*

!O

 

 

-5=+#b#"%Ab# %AE@=5=* #1=># A @=5=* % "%A;=;F%

 

:-* +:#"A;u >

;A %

 

:-* +:#"A;u( &:

;Ab;%

 

:-* +:#"A;Q ;%

 

 

: U ! > -#;m*. , H., += @= + \. ;%A - \ . . >

$

b#"% ,

b# %

T E$P

 

$ ,P " $P , ,P F

E $P ,P A 3 $ , 3 $ ,A $P ,P F

b

b

QT

 

. >

! .#"/ 2 !

3 "

[Y