Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ.doc
Скачиваний:
20
Добавлен:
09.08.2019
Размер:
856.58 Кб
Скачать

В настоящее время установлено, что при возбуждении и торможении всех отделов центральной и периферической нервной системы происходит образование физиологически активных веществ — медиаторов.

В зависимости от того, какой медиатор образуется в окончаниях нервных волокон, принято делить их на холинергические и адренергические. Передача возбуждения в холинергических нервных волокнах осуществляется при помощи ацетилхолина, а в адренергических — норадреналина. Холинергическими являются все преганглионарные нервные волокна (парасимпатические и симпатические), все постганглионариые нервные волокна парасимпатической нервной системы и соматические нервы. Адренергическими являются все постганглионарные симпатические нервы, за исключением нервов потовых желез и симпатических нервов, расширяющих кровеносные сосуды.

 Холинергические и адренергические нейроны обнаружены и в центральной нервной системе.

Рецепторы, взаимодействующие с ацетилхолином, называют холинорецепторами, взаимодействующие с норадреналином —адренорецепторами. Медиатор изменяет структуру молекулы белка рецептора; что приводит к повышению проницаемости постсинаптической мембраны, изменению движения через нее ионов. Вследствие этого в постсинаптической мембране возникает деполяризация или гиперполяризация. Если происходит деполяризация постсинаптической мембраны и этот процесс достигает достаточного (критического) уровня, возбуждение передается на эффекторную клетку. Если же в результате взаимодействия медиатора с рецептором возникает процесс гиперполяризации постсинаптической мембраны, передача возбуждения тормозится.

После того как медиатор передал возбуждение, он разрушается специфическим ферментом.

Этот принцип изучен И. М. Сеченовым, Шеррингтоном, П. К. Анохиным и рядом других исследователей. При рефлекторном сокращении скелетных мышц возбуждаются проприорецепторы. От проприорецепторов нервные импульсы вновь поступают в центральную нервную систему. Этим контролируется точность совершаемых движений. Подобные афферентные импульсы, возникающие в организме в результате рефлекторной деятельности органов и тканей (эффекторов), получили название вторичных афферентных импульсов или «обратной связи».

Обратные связи могут быть: положительными и отрицательными. Положительные обратные связи способствуют усилению рефлекторных реакций, отрицательные - их угнетению.

 

СЕНСОРНЫЕ СИСТЕМЫ МОЗГА

 

Синапс

 

Мы изучали процессы, происходящие в нервном волокне. Теперь надо выяснить, как возбуждение распространяется дальше: на другие нейроны, мышечные волокна, железистые клетки. Впервые этим вопросом заинтересовался французский физиолог и врач Клод Бернар (1813 — 1878) при изучении действия яда кураре. Этот яд использовался американскими индейцами при охоте на крупных животных. Стрела, наконечник которой был смочен кураре, вызывала гибель животных от мышечного паралича.

Специальными опытами Клод Бернар доказал, что кураре не действует ни на нерв, ни на мышцу, а поражает какое-то промежуточное звено, место, где нерв контактирует с мышцей.

Теперь благодаря применению ультрамикроскопии мы знаем, что нервные клетки связаны друг с другом и с  тканями, которые они иннервируют, через синапсы. Синапсы — это места контакта аксона, передающего нервного отростка, с другими нейронами и клеточными элементами, которые воспринимают его сигналы. Под электронным   микроскопом, увеличивающим объекты в десятки тысяч раз, отчетливо видно, что ни нервные клетки, ни мышечные волокна, ни клетки других тканей с аксоном непосредственно не соединяются. Между ними всегда остается узкая щель 0,000002 см. Наличие щели делает невозможным непосредственный переход возбуждения с аксона на следующие нейроны, мышечные волокна и другие образования, с которыми связан аксон.

Как же осуществляется связь между нейронами? Использование электронного микроскопа позволило ответить и на этот вопрос. Было подмечено, что концевые участки аксона образуют небольшое утолщение, напоминающее пуговицу. В этом утолщении имеются пузырьки, которые содержат вещества, такие, например, как ацетилхолин, серотин и др. Подобные вещества называют медиаторами, т. е. посредниками или передатчиками. Попадающие на концевые утолщения аксона нервные импульсы вызывают освобождение медиатора: пузырьки лопаются, а их содержимое поступает в синаптическую щель. Медиатор раздражает мембрану воспринимающего нейрона: в том месте, которое прилегает к синаптической щели. Под влиянием медиатора проницаемость мембраны воспринимающего нейрона меняется: происходит деполяризация ее участка, примыкающего к синаптической щели. Внедрившиеся в этом месте положительные ионы Na+ движутся к тем участкам цитоплазмы, где преобладают отрицательные ионы. Получается направленное движение, вызывающее электрический ток в воспринимающем нейроне. Ток этот непродолжительный, затухающий, но, если он окажется достаточно сильным, нейрон может возбудиться и послать нервный импульс.

 

Нейрон имеет не один, а сотню, иногда несколько тысяч синапсов. Раздражение одного синапса приводит к появлению незначительных токов, которые не всегда могут вызвать возбуждение нейрона. Но если сразу раздражается много синапсов, возникают сильные затухающие токи. Под их влиянием происходит деполяризация мембраны в ближайшем к телу нейрона перехвате Ранвье. Тогда возникают кольцевые токи, и по известному нам механизму возбуждение начинает передаваться от одного перехвата Ранвье к следующему. При этом в каждом перехвате будет генерироваться электрический ток. Эта незатухающая волна дойдет до следующего синапса и вызовет возбуждение нейрона.

Итак, при каждом выбросе медиатора в синаптическую щель в цитоплазме воспринимающего нейрона появляются незначительные концентрации положительно заряженных ионов. Но когда раздражение длится долго и раздражается сразу большое количество синапсов, отдельные эффекты суммируются, складываются и вызывают возбуждение нейрона. Нервные импульсы по его аксону передаются следующим нервным элементам.

 

Однако существуют синапсы, которые выделяют в синаптическую щель вещества, затрудняющие возникновение импульсов в воспринимающем нейроне. Эти синапсы называют тормозными, а нервные клетки, образующие такие синапсы, — тормозными нейронами.

Когда в синаптическуго щель попадают тормозные медиаторы, разница в зарядах на внутренней и внешней сторонах мембраны воспринимающего нейрона не только не падает, а, наоборот, возрастает. Это состояние называют гиперполяризацией. На наружной поверхности мембраны увеличивается концентрация положительных зарядов, на внутренней — отрицательных. Это значительно снижает возбудимость воспринимающего нейрона. Нервные импульсы, которые он генерирует, становятся более редкими или не возникают вовсе. Это приводит к тому, что потоки нервных импульсов блокируются и не доходят до рабочего органа. В результате деятельность этого органа прекращается.

Благодаря различным медиаторам, участвующим в работе синапса, деятельность нейрона может быть усилена или ослаблена. При этом поступающая в нейрон информация не просто пассивно передается дальше, а перерабатывается. Нейрон не отвечает на каждый сигнал, поступивший через его синапсы, а предварительно «суммирует» положительные и отрицательные значения всех передач, как бы взвешивает все «за» и «против» и только после этого посылает нервные импульсы дальше или задерживает их.

Передача информации через синапс осуществляется медиаторами. Если устранить их, например химически связать ацетилхолин, синапсы выходят из строя. С этим фактом и столкнулся Клод Бернар, исследуя мышечные параличи, вызванные ядом кураре.