
- •Техническая термодинамика: цели и задачи. Основные понятия и определения: рабочее тело, термодинамическая система (тдс), виды тдс.
- •Основные параметры состояния: температура
- •3. Основные параметры состояния: давление.
- •4.Основные параметры состояния: объем.
- •5.Термодинамические процессы: равновесные, неравновесные, обратные, прямые, обратимые, необратимые, замкнутые.
- •6. Понятие идеального газа.
- •7. Уравнение состояния идеального газа.
- •8. Газовые смеси. Закон Дальтона.
- •9. Способы задания состава газовых смесей.
- •10. Теплоемкость, определение, виды, уравнения связи.
- •12. Энтальпия.
- •13. Теплота.
- •14. Работа.
- •15. Первый закон термодинамики. Аналитическое выражение, частные случаи.
- •16 Энтропия.
- •17. Уравнение Майера.
- •18. Цикл Карно.
- •19.Холодильная машина
- •21. Изотермический процесс.
- •22. Изобарный процесс.
- •23 Политропный процесс.
- •Так как для политропы в соответствии с (5.1)
- •24. Изохорный процесс.
- •25. Водяной пар.
- •26. Влажный воздух.
- •27.Термодинамика потока газа или пара.
- •28. Способы переноса теплоты.
- •Конвекция
- •29. Теплопроводность в плоских однослойных стенках.
- •30 Теплопроводность в плоских многослойных стенках. Многослойная плоская стенка
- •31 Физический смысл коэффициента теплопроводности. Уравнение Фурье.
- •32 Теплопроводность в цилиндрической однослойной стенке. Однородная цилиндрическая стенка
- •33 Теплопроводность в цилиндрической многослойной стенке.
- •34. Конвективный теплообмен.
- •35. Уравнение Ньютона-Рихмана.
- •36. Физический смысл коэффициента теплоотдачи.
- •38. Температурные графики прямоточного и противоточного тоа. Расчет среднего логарифмического температурного напора.
- •39.Числа подобия
- •40.Виды тоа по принципу действия.
- •41. Уравнение теплового баланса тоа.
38. Температурные графики прямоточного и противоточного тоа. Расчет среднего логарифмического температурного напора.
На рис. изображены примеры графиков изменения температур теплоносителей по длине прямоточного (а) и противоточного (б) теплообменников. Индексами 1 и 2 обозначены параметры соответственно горячего и холодного теплоносителей, одним ( ‘ ) и двумя ( “ ) штрихами – их температуры соответственно на входе и выходе аппарата.
Средний логарифмический или арифметический температурный напор для прямотока и противотока определяется из формул
или (при
)
39.Числа подобия
Основная трудность, возникающая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметром. Чтобы уменьшить число их согласно теории подобия объединяют в меньшее число переменных, называемых числами подобия (они безразмерны).
Каждое из безразмерных чисел имеет определенный физический смысл. Их принято обозначать первыми буквами фамилий ученых, внесших существенный вклад в изучение процессов теплопереноса и гидродинамики, и называть в честь этих ученых.
Число Нуссельта:
представляет собой безразмерный коэффициент теплоотдачи.
Число Рейнольдса
Re=wжl/v
Выражает отношение сил инерции (скоростного напора) Fи=w2ж/2 к силам вязкого трения Fwж/l.
При течении жидкости в трубах ламинарный режим на стабилизированном участке наблюдается до Re=wd/v=2300, а при Re>104 устанавливается развитый турбулентный режим (здесь d – внутренний диаметр трубы).
Число Прандтля:
Pr=cv/
Состоит из величин характеризующих теплофизические свойства вещества и по существу само является теплофизической константой вещества. Значение число Pr приводится в справочниках.
В случае естественной конвекции скорость жидкости в дали от поверхности wж=0 и соответственно Re=0, но на теплоотдачу будет влиять подъемная сила Fп. Это приведет к появлению другого безразмерного параметра – числа Грасгофа:
Gr=g(tc-tж)l3/v2
Оно характеризует отношение подъемной силы, возникающей вследствие теплового расширения жидкости, к силам вязкости.
40.Виды тоа по принципу действия.
Теплообменным аппаратом (теплообменником) называется устройство, в котором осуществляется теплообмен между двумя или несколькими теплоносителями.
По принципу действия теплообменники подразделяются на поверхностные, контактные и с внутренним источником теплоты (например, реакторы атомных электростанций). Поверхностные теплообменники делятся на рекуперативные и регенеративные, а контактные – на смесительные и барботажные.
В рекуперативных теплообменниках теплоносители непрерывно омывают разделяющую стенку (поверхность теплообмена) с двух сторон и обмениваются при этом теплотой. В рекуперативном трубчатом теплообменнике один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
В рекуперативных теплообменниках движение жидкости осуществляется по трем основным схемам или их сочетаниям.
Конструктивно рекуперативные теплообменные аппараты могут выполняться с пластинчатой и трубчатой (рис. 1 и 2) поверхностями теплообмена.
В регенеративных теплообменниках (регенераторах) одна и та же поверхность поочередно омывается то горячим, то холодным теплоносителем. При протекании горячего теплоносителя поверхность регенератора, воспринимая теплоту от этой жидкости, нагревается, а при протекании холодного теплоносителя поверхность регенератора, отдавая аккумулированную теплоту холодному теплоносителю, охлаждается.
В смесительных теплообменниках передача теплоты от горячего к холодному теплоносителю происходит при непосредственном контакте и смешении обоих теплоносителей. Смесительный теплообменник целесообразно использовать для теплоносителей, которые либо легко разделить после смешения (например, вода и воздух), либо перемешать (например, пар и вода).