Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8-15.docx
Скачиваний:
2
Добавлен:
07.08.2019
Размер:
114.86 Кб
Скачать
  1. Запишите модель Молла–Эбберса в виде эквивалентной схемы. Выведите систему уравнений модели. Классическая модель Эберса - Молла

Классическая модель Эберса - Молла базируется на эквивалентной схеме, изображенной на рис. 3.15. От передаточной модели классическая отличается тем, что составляющие токов транзистора сгруппированы иначе. Переходы транзистора представлены изолированными диодами, токи которых i 1 и i 2 определяются напряжениями u эп и u кп соответственно: , (3.21)

где   и  . (3.22)

Тепловые токи IЭБК и IКБК имеют следующий смысл:

  • IЭБК - это тепловой ток эмиттера в схеме с общей базой при uКП = 0 ( замыкании выводов коллектора и базы).

  • IКБК - тепловой ток коллектора в схеме с ОБ при uЭП=0.

Формально тепловые токи соответствуют токам переходов при обратных напряжениях, много больших u т. Однако реально измеряемые обратные токи переходов транзистора окажутся гораздо больше за счет токов генерации в переходах и токов утечки. (Аналогичная ситуация рассматривалась при анализе p-n-перехода). Поэтому определить значения тепловых токов транзистора можно только по результатам измерений при прямых напряжениях на переходах. Взаимодействие переходов отражено путем введения в эквивалентную схему генераторов тока a i1 и a I i2 .

Соответственно токи в цепях каждого электрода можно рассчитать по формулам:   . (3.23)

  1. Где применяются коэффициенты усиления бт  и ? Выведите формулы для их взаимного преобразования. Назовите физический смысл коэффициентов инжекции и диффузии.

 Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Физический смысл коэффициента диффузии D: если -=1, В = 1 и = 1, то m = D, т.е. коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентрации, площадь сечения диффузионного потока и время равны единице. 

  1. Приведите схемы включения БТ и сравните их по следующим параметрам: Ku, Ki, Kp, Rвых, Rвх.

Рис. 1 - Схема включения транзистора с общим эмиттером

  • Большой коэффициент усиления по току

  • Большой коэффициент усиления по напряжению

  • Наибольшее усиление мощности

Рис. 2 - Схема включения транзистора с общей базой

  • Малое усиление по току, так как α < 1

  • Малое входное сопротивление

Рис. 3 - Схема включения транзистора с общим коллектором

  • Большое входное сопротивление

  • Малое выходное сопротивление

  • Коэффициент усиления по напряжению меньше 1.

  1. Нарисуйте эквивалентную схему БТ в виде четырехполюсника (схему в h–параметрах). Назовите физический смысл h–параметров. Почему h11 устанавливается последовательно, а h22 – параллельно? Каковы идеальные значения h–параметров?

Система h-параметров

Система h-параметров используется как комбинированная система из двух предыдущих, причем из соображений удобства измерения параметров биполярного транзистора выбирается режим короткого замыкания на выходе (U2 = 0) и режим холостого хода на входе (I1 = 0). Поэтому для системы h-параметров в качестве входных параметров задаются ток I1 и напряжение U2, а в качестве выходных параметров рассчитываются ток I2 и напряжение U1, при этом система, описывающая связь входных I1, U2 и выходных I2, U1 параметров, выглядит следующим образом:

Значения коэффициентов в уравнении для h-параметров имеют следующий вид:

 - входное сопротивление при коротком замыкании на выходе;

 - выходная проводимость при холостом ходе во входной цепи;

 - коэффициент обратной связи при холостом ходе во входной цепи;

 - коэффициент передачи тока при коротком замыкании на выходе.

Эквивалентная схема четырехполюсника с h-параметрами приведена на рисунке 5.24а, б. Из этой схемы легко увидеть, что режим короткого замыкания на выходе или холостого хода на входе позволяет измерить тот или иной h-параметр.

Рис. 5.24. Эквивалентная схема четырехполюсника: а) биполярный транзистор в схеме с общей базой; б) биполярный транзистор в схеме с общим эмиттером

Рассмотрим связь h-параметров биполярного транзистора в схеме с общей базой с дифференциальными параметрами. Для этого воспользуемся эквивалентной схемой биполярного транзистора на низких частотах, показанной на рисунке 5.24а, а также выражениями для вольт-амперных характеристик транзистора в активном режиме. Получаем:

Для биполярного транзистора в схеме с общим эмиттером (рис. 5.24б) выражения, описывающие связь h-параметров с дифференциальными параметрами, будут иметь следующий вид:

Для различных схем включения биполярного транзистора (схема с общей базой, общим эмиттером и общим коллектором) h-параметры связаны друг с другом. В таблице 2 приведены эти связи, позволяющие рассчитывать h-параметры для схемы включения с общей базой, если известны эти параметры для схемы с общим эмиттером.

Таблица 2. Связи между h параметрами

Дифференциальные параметры биполярных транзисторов зависят от режимов их работы. Для схемы с общим эмиттером наибольшее влияние испытывает коэффициент усиления эмиттерного тока h21э в зависимости от тока эмиттера. На рисунке 5.25 приведена эта зависимость для транзисторов КТ215 различных типономиналов. В области малых токов (микромощный режим) коэффициент усиления уменьшается вследствие влияния рекомбинационной компоненты в эмиттерном переходе, а в области больших токов (режим высокого уровня инжекции) - коэффициент усиления уменьшается вследствие уменьшения коэффициента диффузии.

  1. Назовите особенности применения малосигнальных моделей и их отличия от моделей для больших сигналов, приведите примеры.

Для анализа работы транзистора в усилительных устройствах в активном режиме часто используют физические и формализованные модели транзистора при заданных значениях постоянных напряжений и токов, совокупность которых определяет режим работы транзистора по постоянному току (или так называемую «рабочую точку»), для небольших (малых) изменений переменных токов и напряжений в окрестности этой рабочей точки. Именно для этих малых изменений переменных и строятся малосигнальные модели транзистора. Одной из физических малосигнальных моделей является модель, основой которой является модель Эберса-Молла с двумя источниками тока. 

При переходе к малосигнальной схеме можно ограничиться рассмотрением наиболее распространенного нормального активного режима, так как результаты легко перенести и на инверсный активный режим. В этом случае можно исключить генератор тока и малосигнальную модель БТ для схемы включения с ОБ изобразить, как на рисунке

15. Перечислите режимы работы БТ и покажите их области на ВАХ, назовите направления включения переходов в этих режимах.

  Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

    Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками UЭБ и UКБ. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

   Для усиления сигналов применяется активный режим работы транзистора.     При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]