
- •Этапы развития технических средств автоматизации
- •Понятие исполнительного устройства (механизма)
- •Поколения промышленных роботов
- •Фундаментальные принципы управления. Расчет элементарных динамических звеньев.
- •Бинарные и цифровые датчики
- •Состав и режимы работы роботов
- •Основные виды систем автоматического управления (сау)
- •Динамические характеристики датчиков
- •Опишите структуру комплекса асутп
- •Классификация промышленных роботов
- •Статические характеристики систем автоматического управления. Прямая и обратная задачи преобразований Лапласа
- •Параметры, определяющие технический уровень роботов
- •Статическое и астатическое регулирование
- •Понятие исполнительного устройства (механизма)
- •Число степеней подвижности промышленных роботов.
- •Сравнительная характеристика приводов промышленных роботов.
- •Элементарные динамические звенья
- •Статические характеристики датчиков. Рассчитать статическую характеристику датчика температуры.
- •Типовая схема и элементы управления пневмопривода промышленных роботов.
- •Понятие о временных характеристиках сау. Рассчитать переходную характеристику электромеханической муфты.
- •Бинарные и цифровые датчики
- •Виды частотных характеристик и способы их определения.
- •Понятие о частотных характеристиках сау
- •Пневматический следящий привод промышленных роботов.
- •Законы регулирования.
- •Электрический привод промышленных роботов
- •Опишите структуру комплекса асутп
- •Комбинированный привод промышленных роботов
- •Критерий устойчивости Найквиста
- •Бинарные (двухпозиционные) исполнительные механизмы
- •Задачи и история робототехники, основные предпосылки к применению.
- •Критерий устойчивости Михайлова.
- •Использование микропроцессорной техники в системах автоматического управления.
- •Поколения промышленных роботов.
- •Критерий устойчивости Рауса-Гурвица
- •Классификация промышленных роботов.
- •Статическое и астатическое регулирование.
- •Цифро-аналоговое преобразование сигналов.
- •Системы координат промышленных роботов.
- •Понятие о частотных характеристиках сау.
- •Электромагнитные релейные исполнительные механизмы.
- •Число степеней подвижности промышленных роботов.
- •Элементарные динамические звенья. Рассчитать частотную характеристику апериодического звена первого порядка.
- •Понятие датчика.
- •Назовите самые важные характеристики цап, которые нужно учитывать при его выборе или разработке.
Число степеней подвижности промышленных роботов.
Каждый промышленный робот включает большую группу механизмов, связанных в общую кинематическую цепь. Как правило, каждый такой механизм имеет свой собственный привод и обеспечивает движение одной степени подвижности.
Число степеней подвижности (W) Промышленных Роботов определяет число степеней свободы его полной кинематической цепи относительно звена, принятого за неподвижное, например, относительно неподвижной стойки или основания. Другими словами это сумма возможных координатных перемещений объекта манипулирования относительно неподвижного звена. Причем, при определении числа степеней подвижности принято не учитывать движение захватного устройства (УЗ) при захвате объекта манипулирования.
Промышленные роботы с 1…3 степенями подвижности, используются при автоматизации несложных технологических процессов для повторяющихся операций. Промышленные Роботы для более сложных, часто перепрограммируемых процессов могут иметь до 5…6 степеней подвижности.
Линеаризация уравнений динамики САУ. Задача выбора оптимального способа линеаризации.
Погрешность и точность датчиков.
Точность - основная характеристика любого датчика, определяющая погрешность его измерений.
Погрешность измерений - величина максимального расхождения между показаниями реального и идеального датчиков.
Абсолютная погрешность: разность между значением, вычисленным по выходному сигналу датчика (или полученным высокоточным измерителем) и реальным значением поданного входного сигнала.
Относительная погрешность: отношение абсолютной погрешности к измеренной величине. Часто указывается в %.
Систематическая погрешность: погрешность при отсутствии случайной погрешности. Поскольку случайная погрешность всегда существует и устраняется усреднением результатов множества измерений, то на практике систематическая погрешность является средним значением множества экспериментальных значений.
На точность датчиков влияют такие характеристики как:
гистерезис,
мертвая зона,
параметры калибровки,
повторяемость датчиков от партии к партии,
воспроизводимость погрешностей.
Предельно допустимые погрешности обычно соответствуют самым худшим рабочим характеристикам датчиков. Из рис.Б (3.2 Диапазон измеряемых и выходных значений) видно, что при более корректном проведении калибровки (например, при проведении калибровки на большем количестве точек), калибровочная кривая проходит ближе к реальным передаточным функциям, что означает повышение точности измерений. На практике пределы допустимых погрешностей устанавливаются не вокруг идеальной передаточной функции, а относительно калибровочной кривой. Допустимые пределы становятся меньше, если они не включают в себя погрешности, связанные с различиями датчиков от партии к партии, а также когда они относятся только к одному специально откалиброванному датчику. Все это повышает точность измерений, однако значительно повышает стоимость, из-за чего во многих ситуациях эти методы не могут быть применены.
Погрешность датчиков представляют:
непосредственно в единицах измеряемой величины (?),
в процентах от значения максимального входного сигнала,
в единицах выходного сигнала.
Например, погрешность пьезорезистивного датчика давления с диапазоном входных сигналов 100 кПа и диапазоном выходных сигналов 10 Ом можно определить как: ±0.5%, ±500 Па или ±0.05 Ом.
Основные виды связей между элементами систем автоматического управления.
Виды электродвигательных исполнительных механизмов. Рассчитать передаточную функцию исполнительного механизма, изменяющего расход жидкости при наполнении емкости.
Классификация электроприводов
По количеству и связи исполнительных, рабочих органов:
Индивидуальный, в котором рабочий исполнительный орган приводится одним самостоятельным двигателем, приводом.
Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.
По типу управления и задаче управления:
Автоматизированный ЭП, управляемый путем автоматического регулирования параметров и величин.
Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.
По характеру движения:
ЭП с вращательным движением.
Линейный ЭП с линейными двигателями.
Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.
По наличию и характеру передаточного устройства:
Редукторный ЭП с редуктором или мультипликатором.
Электрогидравлический с передаточным гидравлическим устройством.
Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.
По роду тока:
Переменного тока.
Постоянного тока.
По степени важности выполняемых операций:
Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
Вспомогательный ЭП.