
- •Выбор места контроля загрязнения и поиск его источника с целью первичной оценки и отбора проб.
- •Пробоподготовка в анализе объектов окружающей среды
- •20 См) нанесены риски. Проба отбирается вращением пробоотборника за рукоятку против часовой стрелки с
- •Отбор проб донных отложений
- •Отбор проб растительности.
- •6. Отбор проб животного происхождения
- •Стабилизация, хранение, и транспортировка проб для анализа.
- •Особенности хранения биологических проб.
- •Отбор проб объектов загрязненной среды. Отбор проб воды.
- •Пробы из рек и водных потоков.
- •Пробы из природных и искусственных озер (прудов).
- •Пробы влажных осадков (дождя и снега).
- •Пробы грунтовых вод.
- •14. Пробы воды из водопроводных сетей.
- •Отбор проб воздуха. Отбор проб газа, способы и устройства для хранения газов.
- •4) Экстракция
- •Отбор проб в жидкие среды.
- •Отбор проб на твердые сорбенты
- •Криогенное концентрирование.
- •Хемосорбция.
- •24. Отбор проб в контейнеры.
- •25. Концентрирование на фильтрах.
- •26. Метод пробоподготовки сухое и мокрое озоление. Преимущества и недостатки.
- •Физико-химические методы в контроле загрязнения окружающей среды. Основные приборы и устройства для проведения анализов.
- •Экологическое нормирование. Критерии оценки качества окружающей природной среды. Нормы оценки загрязнения атмосферного воздуха, поверхностных вод и почв.
- •31.Электрохимические методы анализа
- •32. Вольтамперометрия.
- •Потенциометрические методы анализа.
- •Кислотно-основное титрование.
- •Комплексонометрическое титрование.
- •Титрование по методу осаждения.
- •Окислительно-восстановительное титрование .
- •Газовый анализ. Виды газового анализа: механические, акустические, тепловые, магнитные, оптические, ионизационные, масс-спектрометрические, электрохимические, полупроводниковые.
- •Микроскопия. Методы микроскопии.
- •Оптическая микроскопия.
- •Электронная микроскопия.
- •Рентгеновская микроскопия
- •Трансмиссионная микроскопия.
- •Растровая (сканирующая) микроскопия.
- •Сканирующая микроскопия.
- •Физические методы в мониторинге (масспектрометрия, рентгеноспектральный анализ).
- •Использование методов хроматографии в экологическом мониторинге. Способы расчета концентрации загрязняющих веществ.
- •Относится к оптическим методам анализа воды
- •Глобальные и региональные прогнозы состояния природной среды. Прогноз загрязнения природных вод, почв. Прогноз качества водных ресурсов.
- •Мониторинг за состоянием окружающей среды в местах хранения (накопления) отходов.
- •Глобальные и региональные прогнозы состояния природной среды. Прогноз загрязнения атмосферы.
Рентгеновская микроскопия
Рентгеновская микроскопия — совокупность методов исследования микроскопического строения вещества с помощью рентгеновского излучения. В рентгеновской микроскопии используют специальные приборы — рентгеновские микроскопы. Разрешающая способность достигает 100 нм, что в 2 раза выше, чем у оптических микроскопов (200нм). Теоретически рентгеновская микроскопия позволяет достичь на 2 порядка лучшего разрешения, чем оптическая (поскольку длина волны рентгеновского излучения меньше на 2 порядка). Однако современный оптический микроскоп - наноскоп имеет разрешение до 3-10нм.
Рентгеновская микроскопия разделяется на:
Отражательная микроскопия
Проекционная микроскопия
Электронная микроскопия
Рентгеновская лазерная микроскопия
Отражательные
В микроскопах этого типа используются приёмы, позволяющие добиться максимального увеличения, благодаря чему линейное разрешение проекционных рентгеновских микроскопов достигает 0,1—0,5 мкм. В качестве линз в них используется система зеркал. Изображения, создаваемые отражательными рентгеновскими микроскопами даже при точном выполнении профиля их зеркал искажаются различными аберрациями оптических систем: астигматизм, кома.
Отражательные рентгеновские микроскопы не получили широкого распространения из-за технических сложностей их изготовления и эксплуатации.
Проекционные рентгеновские микроскопы представляют собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство. Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше.
Увеличение (М) в методе рентгеновской проекционной микроскопии определяется отношением расстояний от источника рентгеновского излучения до детектора (b) к расстоянию от источника до объекта (а):
М = b/a
В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы. Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такие микроскопы имеют разрешающую способность до 30 нанометров.
Для фокусировки рентгеновского излучения применяются также изогнутые монокристаллы. Но при этом на качество изображения сказываются структурные несовершенства монокристаллов, а также конечная величина брэгговских углов дифракций.
Ла́зерная рентге́новская микроскопи́я — разновидность рентгеноструктурного анализа, основанного на дифракции рентгеновских лучей на исследуемом объекте. В отличие от традиционного рентгеноструктурного анализа, исследуется одиночные молекулы и их сочетания.
Для получения и дальнейшей регистрации дифракционной картины на одиночном объекте требуется:
высокая концентрация энергии излучения на исследуемом объекте как из-за его размера (традиционный рентгеноструктурный анализ имеет дело с кристаллами из исследуемых объектов), так и из-за ограниченной чувствительности принимающей аппаратуры (при недостаточной энергии не удастся зафиксировать картину);
малое время экспонирования, так как вследствие высокой концентрации энергии объект неизбежно разрушается излучением. Характерные временные интервалы — несколько фемтосекунд (10−12 с);
высокая пространственная когерентность излучения (длина когерентности должна быть по крайней мере сравнима с длиной оптического пути прибора), в противном случае из-за малого времени экспонирования возникающее искажение фазы не позволит сформировать устойчивую дифракционную картину.