
- •1.9 Список основной литературы
- •1.10 Список дополнительной литературы
- •Тема 2 Основные понятия и показатели надежности (0,5 часа)
- •Тема 3 Критерии работоспособности и расчета деталей (0,5 часа)
- •Тема 4 Общие вопросы проектирования (0,5 часа)
- •1. Решетов д.Н. Детали машин. – м.: Машиностроение, 1989.
- •2. Леликов о.П. Основы расчета и проектирования деталей и узлов машин. – м.: Машиностроение, 2004.
- •Раздел 2 Соединения деталей машин
- •Тема 5 Резьбовые соединения (1 час)
- •Тема 6 Сварные соединения. (1 час)
- •Тема 7 Заклепочные соединения. (0,5 часа)
- •Тема 8 Шпоночные соединения. (0,5 часа)
- •Тема 9 Шлицевые соединения. (0,5 часа)
- •Раздел 3 Передачи
- •Тема 10 Механические передачи. (1 часа)
- •6. Распределение энергии двигателя между несколькими исполнительными элементами машины.
- •Характер и причины отказов под действием контактных напряжений
- •Тема 11 Зубчатые передачи. (2 час)
- •Тема 12 Червячные передачи. (1 час)
- •Тема 13 Ременные передачи. (1 час)
- •Тема 14 Цепные передачи. (1 час)
- •2. Иванов м.Н. Детали машин. – м.: Высшая школа, 1991.
- •3. Леликов о.П. Основы расчета и проектирования деталей и узлов машин. – м.: Машиностроение, 2004.
- •Раздел 4 Узлы и детали, обслуживающие вращательное движение
- •Тема 15 Валы и оси (1 час)
- •Тема 16 Подшипники качения. (1 час)
- •Тема 17 Подшипники скольжения. (0,5 часа)
- •Тема 18 Муфты приводов. (1 час)
- •4 Методические указания для выполнения практических (семинарских) занятий
- •Тема 1 Кинематический и силовой расчет привода. (1 час)
- •Тема 2 Зубчатые передачи. (2 часа)
- •Тема 3 Червячные передачи. (2 часа)
- •Тема 4 Ременные передачи. (2 часа)
- •Тема 5 Цепные передачи. (2 часа)
- •Тема 6 Оси и валы. (2 час)
- •Тема 7 Подшипники качения. (2 часа)
- •Тема 8 Шпоночные и шлицевые соединения. (1 час)
- •Тема 9 Муфты. (1 час)
- •5 Методические указания для выполнения лабораторных работ
- •1. Им в.А., Касимов а.Т., Апачиди н.К., Бударагина а.А., Сергеева е.А. Методические указания к лабораторной работе №1 по дисциплине «Основы конструирования и детали машин». Караганда: КарГту, 2005
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •1. Эпов в.С., Им в.А., Эттель в.А. Методические указания к лабораторной работе №3 по дисциплине «Основы конструирования и детали машин». Караганда: КарГту, 2005
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •6 Тематический план самостоятельной работы студента с преподавателем
- •7 Материалы для контроля знаний студентов в период рубежного контроля и итоговой аттестации
- •7.1 Тематика письменных работ по дисциплине
- •7.2 Вопросы (тестовые задания) для самоконтроля
- •33 Способность детали сопротивляться разрушению или необратимому изменению формы, называется:
- •34 Способность детали сохранять первоначальную форму своей поверхности, сопротивляясь абразивному воздействию, называется:
- •35 Выберете верное определение понятия «надежности»:
- •125 Дайте характеристику подшипнику с номером 8310:
- •126 Дайте характеристику подшипнику с номером 6407:
- •127 Дайте характеристику подшипнику с номером 7508:
- •128 Дайте характеристику подшипнику с номером 1109:
- •8 Методические указания для выполнения курсового проекта
- •8.1 Общие положения
- •8.2 Последовательность выполнения курсового проекта
- •8.3 Оформление результатов курсового проектирования
- •8.4 Рекомендуемая литература
- •8.5 Варианты заданий
Тема 17 Подшипники скольжения. (0,5 часа)
План лекции:
1. Общие сведения
2. Классификация подшипников скольжения
2. Режимы смазки
Подшипники скольжения состоят из корпуса, вкладышей и смазывающих устройств. В простейшем виде подшипник скольжения представляет собой вкладыш (втулку) 1 (рис. 85,а), который с зазором устанавливают на цапфу вала и закрепляют в корпусе подшипника или чаще всего непосредственно в станине или раме машины.
Несущую способность подшипника обеспечивает применение смазочного материала (жидкого, газообразного, пластичного) или создание магнитного поля.
В зависимости от направления воспринимаемой нагрузки подшипники скольжения подразделяют на:
радиальные – предназначенные для восприятия радиальной силы Fr (рис. 33.1,а);
упорные – предназначенные для восприятия осевой силы Fa–Упорные подшипники часто называют подпятниками (рис. 85,б);
радиально–упорные – предназначенные для восприятия радиальных и осевых сил (рис. 85,в и г).
Достоинства подшипников скольжения.
1. Надежно работают в высокоскоростных приводах (подшипники качения в этих условиях имеют малую долговечность).
2. Способны воспринимать значительные ударные и вибрационные нагрузки вследствие больших размеров рабочей поверхности и высокой демпфирующей способности масляного слоя.
3. Работают бесшумно.
4. Имеют сравнительно малые радиальные размеры (см. рис. 85).
5. Разъемные подшипники допускают установку их на шейки коленчатых валов; при ремонте не требуют демонтажа муфт, шкивов и т.д.
6. Для тихоходных машин могут иметь весьма простую конструкцию.
Рисунок 85 – Подшипники скольжения
Недостатки подшипников скольжения.
1. В процессе работы требуют постоянного надзора из–за высоких требований к наличию смазочного материала и опасности перегрева; перерыв в подаче смазочного материала ведет к разрушению подшипника.
2. Имеют сравнительно большие осевые размеры.
3. Значительные потери на трение в период пуска и при несовершенной смазке.
4. Большой расход смазочного материала, необходимость его очистки и охлаждения.
Применение. Подшипники скольжения применяют во многих отраслях машино- и приборостроения преимущественно в условиях, в которых применение подшипников качения невозможно или нецелесообразно:
1. Для валов изделий, работающих с ударными и вибрационными нагрузками (двигатели внутреннего сгорания, молоты и др.).
2. Для коленчатых валов, когда по условиям сборки необходимы разъемные подшипники.
3. Для валов больших диаметров, для которых отсутствуют подшипники качения.
4. Для высокоскоростных валов, когда подшипники качения непригодны вследствие малого ресурса (центрифуги и др.).
5. При очень высоких требованиях к точности и равномерности вращения (шпиндели станков, опоры телескопов и др.).
6. В тихоходных машинах, бытовой технике.
7. При работе в воде и агрессивных средах, в которых подшипники качения непригодны.
В общем машиностроении для подшипников скольжения наиболее часто применяют жидкие смазочные материалы – масла. Масла имеют низкий коэффициент внутреннего трения, хорошо очищают и охлаждают рабочие поверхности, их легко подавать к местам смазывания. Недостатком является необходимость уплотнения мест смазывания.
Вязкость является важнейшим свойством масел. Вязкость характеризует объемное свойство смазочного материала оказывать сопротивление относительному перемещению его слоев. В гидродинамических расчетах используют динамическую вязкость , Па·с. Вязкость существенно понижается с ростом температуры (примерно по кубической параболе).
Режимы смазки. Подшипник скольжения работает при наличии смазочного материала в зазоре между цапфой вала и вкладышем. Смазыванием называют подведение смазочного материала в зону трения, смазкой – действие смазочного материала.
При неподвижном вале жидкий смазочный материал в подшипнике из зоны контакта выдавлен (рис. 86,а), но на поверхностях цапфы и вкладыша сохраняется его тонкая пленка толщиной порядка 0,1 мкм. Толщины этой пленки не хватает для полного разделения поверхностей трения в момент пуска и при малой угловой скорости вала. Работу подшипника в этот момент характеризует режим граничной смазки (при этом свойства смазочного материала отличаются от объемных). Вращающийся вал вовлекает смазочный материал в клиновой зазор между цапфой и вкладышем, в результате чего возникает несущий масляный слой, характеризуемый значительной гидродинамической подъемной силой, под действием которой вал всплывает (рис. 86,б). По мере увеличения скорости толщина смазывающего слоя увеличивается, но отдельные микровыступы трущихся поверхностей задевают при вращении друг за друга. Работу подшипника в этот момент характеризует резким полужидкостной смазки. Граничную и полужидкостную смазку объединяют одним понятием – несовершенная смазка.
Рисунок 86 – Смазка подшипников скольжения
При дальнейшем возрастании угловой скорости вала возникает сплошной устойчивый слой масла, полностью разделяющий шероховатости поверхностей трения. Возникает режим жидкостной смазки, при котором изнашивание и заедание отсутствуют.
Подшипники скольжения, в которых несущий масляный слой создается при вращении цапфы, называют гидродинамическими. В гидростатических подшипниках режим жидкостной смазки создают за счет подвода масла под цапфу или под пяту от насоса. Давление рм масла должно быть таким, чтобы вал под его воздействием всплыл в масле (рис. 87). В гидростатических подшипниках создание несущего масляного слоя не зависит от угловой скорости вала.
Рисунок 87 – Гидростатический подшипник