- •1.9 Список основной литературы
- •1.10 Список дополнительной литературы
- •Тема 2 Основные понятия и показатели надежности (0,5 часа)
- •Тема 3 Критерии работоспособности и расчета деталей (0,5 часа)
- •Тема 4 Общие вопросы проектирования (0,5 часа)
- •1. Решетов д.Н. Детали машин. – м.: Машиностроение, 1989.
- •2. Леликов о.П. Основы расчета и проектирования деталей и узлов машин. – м.: Машиностроение, 2004.
- •Раздел 2 Соединения деталей машин
- •Тема 5 Резьбовые соединения (1 час)
- •Тема 6 Сварные соединения. (1 час)
- •Тема 7 Заклепочные соединения. (0,5 часа)
- •Тема 8 Шпоночные соединения. (0,5 часа)
- •Тема 9 Шлицевые соединения. (0,5 часа)
- •Раздел 3 Передачи
- •Тема 10 Механические передачи. (1 часа)
- •6. Распределение энергии двигателя между несколькими исполнительными элементами машины.
- •Характер и причины отказов под действием контактных напряжений
- •Тема 11 Зубчатые передачи. (2 час)
- •Тема 12 Червячные передачи. (1 час)
- •Тема 13 Ременные передачи. (1 час)
- •Тема 14 Цепные передачи. (1 час)
- •2. Иванов м.Н. Детали машин. – м.: Высшая школа, 1991.
- •3. Леликов о.П. Основы расчета и проектирования деталей и узлов машин. – м.: Машиностроение, 2004.
- •Раздел 4 Узлы и детали, обслуживающие вращательное движение
- •Тема 15 Валы и оси (1 час)
- •Тема 16 Подшипники качения. (1 час)
- •Тема 17 Подшипники скольжения. (0,5 часа)
- •Тема 18 Муфты приводов. (1 час)
- •4 Методические указания для выполнения практических (семинарских) занятий
- •Тема 1 Кинематический и силовой расчет привода. (1 час)
- •Тема 2 Зубчатые передачи. (2 часа)
- •Тема 3 Червячные передачи. (2 часа)
- •Тема 4 Ременные передачи. (2 часа)
- •Тема 5 Цепные передачи. (2 часа)
- •Тема 6 Оси и валы. (2 час)
- •Тема 7 Подшипники качения. (2 часа)
- •Тема 8 Шпоночные и шлицевые соединения. (1 час)
- •Тема 9 Муфты. (1 час)
- •5 Методические указания для выполнения лабораторных работ
- •1. Им в.А., Касимов а.Т., Апачиди н.К., Бударагина а.А., Сергеева е.А. Методические указания к лабораторной работе №1 по дисциплине «Основы конструирования и детали машин». Караганда: КарГту, 2005
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •1. Эпов в.С., Им в.А., Эттель в.А. Методические указания к лабораторной работе №3 по дисциплине «Основы конструирования и детали машин». Караганда: КарГту, 2005
- •2. Чернавский с.А. И др. Курсовое проектирование деталей машин. – м.: Высшая школа, 1987.
- •6 Тематический план самостоятельной работы студента с преподавателем
- •7 Материалы для контроля знаний студентов в период рубежного контроля и итоговой аттестации
- •7.1 Тематика письменных работ по дисциплине
- •7.2 Вопросы (тестовые задания) для самоконтроля
- •33 Способность детали сопротивляться разрушению или необратимому изменению формы, называется:
- •34 Способность детали сохранять первоначальную форму своей поверхности, сопротивляясь абразивному воздействию, называется:
- •35 Выберете верное определение понятия «надежности»:
- •125 Дайте характеристику подшипнику с номером 8310:
- •126 Дайте характеристику подшипнику с номером 6407:
- •127 Дайте характеристику подшипнику с номером 7508:
- •128 Дайте характеристику подшипнику с номером 1109:
- •8 Методические указания для выполнения курсового проекта
- •8.1 Общие положения
- •8.2 Последовательность выполнения курсового проекта
- •8.3 Оформление результатов курсового проектирования
- •8.4 Рекомендуемая литература
- •8.5 Варианты заданий
Тема 16 Подшипники качения. (1 час)
План лекции:
1. Общие сведения. Классификация
2. Назначение основных деталей подшипника
3. Посадка колец подшипника
Подшипником называют опору или направляющую, определяющую положение движущихся частей по отношению к другим частям механизма. Подшипники, работающие преимущественно на движение с трением качения, называют подшипниками качения, а на движение с трением скольжения — подшипниками скольжения. Подшипник качения включает в себя детали с дорожками качения и тела качения.
Достоинства подшипников качения.
1. Полная взаимозаменяемость, готовность к эксплуатации без дополнительной подгонки или приработки.
2. Малые осевые размеры, простота монтажа и эксплуатации.
3. Малая потребность в смазочном материале. Подшипники с защитными шайбами заполняют пластичным смазочным материалом при изготовлении. Этого запаса хватает на весь срок работы.
4. Малые потери на трение, особенно при трогании с места и невысоких частотах вращения, незначительный нагрев при работе.
5. Малое использование дефицитных цветных металлов при изготовлении. 6. Малая стоимость изготовления в связи с массовым производством.
Недостатки подшипников качения.
1. Большие радиальные размеры.
2. Малая жесткость.
3. Большое сопротивление вращению, шум и низкая долговечность при высоких частотах вращения.
4. Чувствительность к ударным и вибрационным нагрузкам.
Применение. Подшипники качения являются основным видом опор в машинах: в легковом автомобиле более 30 типоразмеров подшипников, в грузовом автомобиле — более 120, в самолете — более 1000 и т.д.
Классификация подшипников качения. Подшипники качения передают силы между валом и корпусом при относительном их вращении. Нагружающие подшипник силы подразделяют на:
– радиальную, действующую в направлении, перпендикулярном оси подшипника;
– осевую, действующую в направлении, параллельном оси подшипника.
Подшипники качения классифицируют по следующим основным признакам:
по форме тел качения (рис. 82) — шариковые (а) и роликовые (б — з), причем последние могут быть с роликами: цилиндрическими короткими (б), длинными (в) и игольчатыми (г), а также бочкообразными (д), коническими (е), бомбинированными (ж) — с небольшой (7–30 мкм на сторону) выпуклостью поверхности качения (бомбиной) и витыми (з) – пустотелыми;
по направлению воспринимаемой нагрузки – радиальные, предназначенные для восприятия радиальных сил; некоторые типы могут воспринимать и осевые силы; радиально–упорные — для восприятия радиальных и осевых сил; подшипники регулируемых типов без осевой силы работать не могут; упорные — для восприятия осевых сил; радиальную силу не воспринимают; упорно–радиальные — для восприятия осевых и небольших радиальных сил;
по числу рядов тел качения — одно–, двух– и четырехрядные;
по основным конструктивным признакам — самоустанавливающиеся (например, сферические самоустанавливаются при угловом смещении осей вала и отверстия в корпусе) и несамоустанавливающиеся; с цилиндрическим или конусным отверстием внутреннего кольца, сдвоенные и др.
Рисунок 82 – Виды тел качения подшипников
Назначение основных деталей подшипника. На рис. 83 показано осевое сечение шарикового радиального однорядного подшипника. Основные детали подшипника:
1 — внутреннее кольцо с диаметром d отверстия; 2 — наружное кольцо; D — наружный диаметр подшипника; 3 — тело качения — шарик; Dw — диаметр тела качения; 4 — сепаратор; охватывает тела качения и перемещается вместе с ними.
Кольца подшипников имеют желоба (канавки), служащие направляющими для тел качения.
Сепаратор (см. сечения А–А и Б–Б на рис. 30.2) предназначен для направления, удержания тел качения в определенном положении (с целью обеспечения соосности колец) и для разделения тел качения от их непосредственного контакта (с целью уменьшения изнашивания и потерь на трение). При невысоких частотах вращения и при качательном движении применяют подшипники без сепараторов (например, подшипники крестовин карданных валов).
Рисунок 83 – Осевое сечение шарикового радиального однорядного подшипника
Основное применение имеет змейковый сепаратор, состоящий из двух волнистых кольцеобразных полусепараторов, соединенных между собой заклепками; в быстровращающихся узлах и подшипниках высокой точности применяют массивные сепараторы (цельные или составные), обеспечивающие более точное положение тел качения относительно колец подшипников.
Посадки колец подшипников. Различают три случая нагружения колец подшипников:
циркуляционное – кольцо вращается относительно линии действия нагрузки;
местное – кольцо неподвижно относительно линии действия нагрузки;
колебательное – кольцо не совершает полного оборота относительно линии действия нагрузки.
При циркуляционном погружении соединение колец с валом или корпусом должно быть выполнено обязательно с натягом, исключающим проворачивание и обкатывание кольцом сопряженной детали. При недостаточном натяге и циркуляционном нагружении между кольцом и посадочной поверхностью может появиться зазор в разгруженной зоне, что приводит к обкатыванию кольцом сопряженной поверхности, ее развальцовке, контактной коррозии, истиранию, снижению точности вращения и разбалансировке.
При местном нагружении применяют посадки, допускающие небольшой зазор. Обкатывания кольцами сопряженных деталей при таком нагружении не происходит, а нерегулярное проворачивание невращающегося кольца полезно, так как меняется положение его зоны нагружения, что способствует повышению долговечности подшипника. Кроме того, такое сопряжение облегчает осевые перемещения колец при монтаже, при регулировании зазоров в подшипниках и при температурных деформациях.
Посадки подшипников отличаются от обычных расположением и значением полей допусков на посадочные поверхности колец. Подшипник является основным комплектующим изделием, не подлежащим в процессе сборки дополнительной доводке. Требуемые посадки в соединении колец получают назначением соответствующих полей допусков на диаметры вала или отверстия в корпусе (рис. 84).
Интенсивность нагружения подшипникового узла оценивают отношением эквивалентной нагрузки Р к базовой динамической грузоподъемности С.
В соответствии с этим различают режимы нагружения:
легкий –
;нормальный –
;тяжелый –
.
Режимам с большими значениями отношения Р/С должны соответствовать более плотные посадки. Роликовые подшипники работают, как правило, при больших нагрузках, поэтому и посадки роликоподшипников более плотные, чем шарикоподшипников.
Рисунок 84 – Требуемые посадки в соединении колец подшипников
